Skip to main content

Concept Studies 2025+: Challenging Tasks in 0D/1D Engine Simulation

  • Conference paper
  • First Online:
Ladungswechsel und Emissionierung 2018

Part of the book series: Proceedings ((PROCEE))

Abstract

Nowadays 0D/1D simulation is widely used in the engine development process. Thanks to high prediction quality and low computational times, it remains a powerful tool to investigate engine and powertrain concepts for the years 2025+. However, new SI engine concepts such as EGR at full load or lean combustion are needed to meet the decreasing CO2 targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Heywood, J.B.: Internal combustion Engine Fundamentals. McGraw-Hill, New York (1988)

    Google Scholar 

  2. Gülder, Ö.: Correlations of laminar combustion data for alternative S.I. Engine Fuels. SAE Technical paper series, Nr. 841000 (1984)

    Google Scholar 

  3. Law, C.K., Makino, A., Lu, T.: On the off-stoichiometric peaking of adiabatic flame temperature. Combust. Flame 145,808–819 (2006)

    Article  Google Scholar 

  4. Hann, S., Urban, L., Grill, M., Bargende, M.: Influence of binary CNG substitute composition on the prediction of burn rate, engine knock and cycle-to-cycle variations. SAE Int. J. Engines 10(2), 501–511 (2017)

    Article  Google Scholar 

  5. Ewald, J.: A level set based flamelet model for the prediction of combustion in homogeneous charge and direct injection spark ignition engines. Ph.D. thesis, Rheinisch-westfälische Technische Hochschule, Aachen (2006)

    Google Scholar 

  6. Grill, M., Bargende, M.: The development of an highly modular designed zero-dimensional engine process calculation code. SAE paper, Bde. %1 von %22010-01-0149 (2010)

    Google Scholar 

  7. Bossung, C., Bargende, M., Dingel, O., Grill, M.: A quasi-dimensional charge motion and turbulence model for engine process calculations. In: 15. Internationales Stuttgarter Symposium (2015)

    Google Scholar 

  8. Hann, S., Urban, L., Grill, M., Bargende, M.: Prediction of burn rate, knocking and cycle-to-cycle variations of binary compressed natural gas substitutes in consideration of reaction kinetics influences. IJER 19(1), 21–32 (2017)

    Article  Google Scholar 

  9. Bargende, M., Grill, M.: Zukunft der Motorprozessrechnung und 1D-Simulation. Motortechnische Zeitschrift, Nr. Jubiläumsausgabe (2014)

    Article  Google Scholar 

  10. Wenig, M., Grill, M., Bargende, M.: A new approach for modeling cycle-to-cycle variations within the framework of a real working-process simulation. SAE Int. J. Engines 6,1099–1115 (2013). Bde. %1 von %22013-01-1315

    Article  Google Scholar 

  11. Fandakov, A., Grill, M., Bargende, M., Kulzer, A.C.: Two-stage ignition occurrence in the end gas and modeling its influence on engine knock. SAE Int. J. Engines (2017). Nr. 2017-24-0001

    Google Scholar 

  12. Grill, M., et al.: Quasi-dimensional modeling of spark ignition engine combustion with variable valve train. SAE technical paper, Nr. 2006-01-1107 (2006)

    Google Scholar 

  13. Fandakov, A., Grill, M., Bargende, M., Mally, M., Kulzer, A.C.: A new model for predicting the knock boundary with EGR at full load. In: 10. MTZ Conference on the Charge Cycle in Combustion Engines (2017)

    Google Scholar 

  14. Fandakov, A., Grill, M., Bargende, M., Kulzer, A.C.: A two-stage knock model for the development of future SI Engine concepts. SAE technical paper, Nr. 2018-01-0855 (2018)

    Google Scholar 

  15. Fandakov, A., Mally, M., Cai, L., Kulzer, A.C.: Development of a model for predicting the knock boundary in consideration of cooled exhaust gas recirculation at full load. In: 5. IAV International Conference on Knocking in Gasoline Engines (2017)

    Google Scholar 

  16. Focus Online: Abgasnorm Euro 7: Was geplant ist, 18 May 2018. https://www.focus.de/auto/news/abgas-skandal/abgasnorm-euro-7-schon-in-vorbereitung-milliarden-bussgelder-und-neue-grenzwerte-eu-will-elektroautos-erzwingen_id_8948048.html

  17. European Commission, Regulation (EU) 2017/1151. Official Journal of the European Union, 7 July 2017

    Google Scholar 

  18. European Commission, Regulation (EU) 2017/1154. Official Journal of the European Union, 7 May 2017

    Google Scholar 

  19. Fraidl, G., Westerhoff, M.: Addressing the statistically relevant operation modes. MTZ worldwide 78, 24 (2017). https://doi.org/10.1007/s38313-017-0070-5

    Article  Google Scholar 

  20. Baumgarten, H., Scharf, J., Balazs, A., et al.: Simulation-based development methodology for future emission legislation. In: 37th International Vienna Motor Symposium (2016)

    Google Scholar 

Download references

Acknowledgments

The knock model presented in the chapter “Full-Load Exhaust Gas Recirculation” has been developed at the Institute of Internal Combustion Engines and Automotive Engineering (IVK) of the University of Stuttgart, Germany as part of the research tasks within the project “Knock with EGR at full load” defined and financed by the Research Association for Combustion Engines (FVV) e.V. (FVV Project 6301). The authors would like to thank the working group that accompanied the research work and all the companies involved for their support, the colleagues from the Institute for Combustion Engines of the RWTH Aachen University for the collaboration and especially the Institute for Combustion Technology of the RWTH Aachen University for providing the detailed reaction kinetics mechanism, as well as the FVV for granting the financing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Grill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grill, M., Keskin, M.T., Bargende, M., Fasse, S., Hann, S. (2019). Concept Studies 2025+: Challenging Tasks in 0D/1D Engine Simulation. In: Liebl, J. (eds) Ladungswechsel und Emissionierung 2018. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-24984-7_14

Download citation

Publish with us

Policies and ethics