Three-dimensional characterization of duplex stainless steel by means of synchrotron radiation X-ray diffraction imaging techniques

  • Wolfgang LudwigEmail author
  • M. Syha
  • N. Vigano
  • B. Dönges
  • A. Giertler


The combined use of X-ray diffraction contrast tomography (DCT) and X-ray phase imaging techniques like phase contrast tomography and holotomography enable non-destructive characterization of the three dimensional grain and phase microstructure in austenitic-ferritic duplex stainless steel. Phase contrast tomography highlights discontinuities of the refractive index inside a material and is therefore ideally suited for imaging fatigue cracks and phase boundaries. The acquisition of phase images at multiple propagation distances allows for the two-step procedure of phase retrieval and tomographic reconstruction of the refractive index via holotomography. Combined with appropriate regularization and segmentation techniques, this technique provides the sensitivity to discriminate the minute difference in electron density between the austenitic and ferritic constituent phases of duplex steel. X-ray diffraction contrast tomography on the other hand exploits X-ray Bragg diffraction signals of the individual crystallites and yields three-dimensional grain orientation maps for each of the constituent phases (austenite and ferrite). Merging the results of both imaging modalities, the fidelity of the inter-phase boundaries (derived from X-ray holotomography) can be used to enhance the spatial fidelity of the 3D grain orientation maps produced by DCT. We have combined this microstructure characterization scheme with time lapse observations of a propagating fatigue crack by means of repeated phase contrast tomography inspection during an interrupted fatigue test. Access to the crack growth history and the crystallographic microstructure allow for qualitative analysis of fatigue crack – microstructure interactions and provides valuable input for refinement and benchmarking of image based crystal plasticity finite element calculations.


X-ray phase contrast tomography X-ray diffraction contrast tomography X-ray orientation imaging annealing twins texture residual strain fatigue cracks microstructural barriers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] H. F. Poulsen: ‘An introduction to three-dimensional X-ray diffraction microscopy’ J. Appl. Cryst., 2012, 45, 6, 1084–1097.Google Scholar
  2. [2] B. C. Larson, W. Yang, G. E. Ice, J. D. Budai, and J. Z. Tischler: ‘Three-dimensional X-ray structural microscopy with submicrometre resolution’, 2002, Nature, 415, 6874, 887–890.Google Scholar
  3. [3] R. M. Suter, D. Hennessy, C. Xiao, and U. Lienert: ‘Forward modeling method for microstructure reconstruction using x-ray diffraction microscopy: Single-crystal verification’, 2006, Rev. Sci. Instrum., 77, 12, 123905.CrossRefGoogle Scholar
  4. [4] S. F. Li and R. M. Suter: ‘Adaptive reconstruction method for three-dimensional orientation imaging’ J. Appl. Crystallogr., 2013, 46, 2, 512–524.CrossRefGoogle Scholar
  5. [5] R. Pokharel et al.: ‘In-situ observation of bulk 3D grain evolution during plastic deformation in polycrystalline Cu’, Int. J. Plast., 2015, 67, 217–234.CrossRefGoogle Scholar
  6. [6] W. Ludwig et al.: ‘Three-dimensional Grain Mapping by X-ray Diffraction Contrast Tomography ad the Use of Friedel Pairs in Diffraction Data Analysis’, Rev Sci. Instrum., 2009, 80, 33905.CrossRefGoogle Scholar
  7. [7] P. Reischig et al.: ‘Advances in X-ray diffraction contrast tomography: flexibility in the setup geometry and application to multiphase materials’, J. Appl. Cryst., 2013, 46, 297–311.CrossRefGoogle Scholar
  8. [8] G. B. M. Vaughan et al.: ‘X-ray transfocators: Focusing devices based on compound refractive lenses’ J. Synchrotron Radiat., 2011, 18, 2, 125–133.CrossRefGoogle Scholar
  9. [9] N. Viganò, W. Ludwig, and K. J. Batenburg,: ‘Reconstruction of local orientation in grains using a discrete representation of orientation space’, J. Appl. Cryst., 2014, 47, 6, 1826–1840.CrossRefGoogle Scholar
  10. [10] N. Vigano, A. Tanguy, S. Hallais, A. Dimanov, M. Bornert, K. J. Batenburg and W. Ludwig: ‘Three-dimensional full-field X-ray orientation microscopy’, Scientific Reports, 2016 ,6, 20618.Google Scholar
  11. [11] P. J. Withers: ‘X-ray nanotomography’, Mater. Today, 2007, 10, 12, 26–34.CrossRefGoogle Scholar
  12. [12] M. Holler et al.: ‘X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution’, Sci. Rep., 2015, 4, 1, 3857.Google Scholar
  13. [13] W. C. Lenthe, M. P. Echlin, A. Trenkle, M. Syha, P. Gumbsch, and T. M. Pollock: ‘Quantitative voxel-to-voxel comparison of TriBeam and DCT strontium titanate three-dimensional data sets’, J. Appl. Cryst., 2015, 48, 4, 1034–1046.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • Wolfgang Ludwig
    • 1
    Email author
  • M. Syha
    • 1
  • N. Vigano
    • 1
  • B. Dönges
    • 2
  • A. Giertler
    • 3
  1. 1.European Synchrotron Radiation FacilityGrenobleFrance
  2. 2.Institut für WerkstofftechnikUniversität SiegenSiegenGermany
  3. 3.HochschuleOsnabrückOsnabrückGermany

Personalised recommendations