Advertisement

Slip band formation and crack initiation during very high cycle fatigue of duplex stainless steel – Part 1: Mechanical testing and microstructural investigations

  • T. Waurischk
  • M. Söker
  • A. Giertler
  • N. Schönhoff
  • M. Galster
  • B. Dönges
  • Hans-Jürgen Christ
  • Ulrich KruppEmail author
Chapter

Abstract

To investigate 3D effects during the very high cycle fatigue behaviour of two-phase materials, tailored small-sized specimens of duplex (DSS) and super duplex stainless steel (SDSS) were tested by means of ultrasonic testing in ambient air, corrosive atmosphere and under vacuum conditions in situ within a scanning electron microscope. Selected experiments were carried out in combination with high-energy synchrotron diffraction). In general, fatigue damage manifests itself by preferential slip band formation in the softer fcc austenite phase as it was observed in situ by using a thermo-camera with microscopic resolution. Heat dissipation due to localized plasticity becomes visible as hot-spots offering the possibility for predict the onset of fatigue damage at an early state of VHCF life. Crack initiation is observed transgranular and intergranular at austenite/ferrite phase boundaries where slip band impingement results in local stress concentration. Slip band cracking within the austenite grains was observed in the case of the SDSS, while in the case of DSS, the crack starts in the bcc ferrite phase. A corrosive atmosphere promotes slip band cracking, leading to a strong tendency to micro cleavage and eventually to a drastic decrease in VHCF life. During crack propagation, the grain and phase boundaries act as microstructural obstacles, their strength is depending on the crystallographic misorientation relationship between adjacent grains. This is the key factor for limiting the fatigue life of duplex stainless steels and can be altered, e.g., by strengthening the fcc austenite by alloying with nitrogen or by spinodal decomposition of the bcc ferrite during 475°C treatment.

Keywords

Fatigue crack initiation short fatigue crack propagation microstructural barriers in situ fatigue testing corrosion fatigue duplex stainless steel 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] H. Mughrabi and C. Wüthrich: ‘Asymmetry of slip and shape changes during cyclic deformation of α-iron single crystals’, Philos. Mag., 1967, 33, 963-984.CrossRefGoogle Scholar
  2. [2] U. Krupp, H. Knobbe, H. J. Christ, P. Köster and C. P. Fritzen: ‘The significance of microstructural barriers during fatigue of a duplex steel in the high- and very-high-cycle-fatigue (HCF/VHCF) regime’, Int. J. Fatigue, 2010, 32, 914–920.CrossRefGoogle Scholar
  3. [3] U. Krupp and I. Alvarez-Armas: ‘Short Fatigue Crack Propagation during Low-Cycle, High Cycle and Very-High-Cycle Fatigue of Duplex Steel – A Unified Approach’, Int. J. Fatigue, 2014, 65, 78-85.CrossRefGoogle Scholar
  4. [4] M.-C. Marinelli, A. El Bartali, J. W. Signorelli, P. Evrard, V. Aubin, I. Alvarez-Armas and S. Degallaix-Moreuil: ‘Activated slip systems and microcrack path in LCF of a duplex stainless steel’, Mater. Sci. Eng. A, 2009, 509, 81–88.CrossRefGoogle Scholar
  5. [5] U. Krupp (ed.): ‘Fatigue Crack Propagation in Metals and Alloys’; 2007, Weinheim, Wiley-VCH Verlag.Google Scholar
  6. [6] T. Zhai, A. J. Wilkinson and J. W. Martin: ‘A crystallographic mechanism for fatigue crack propagation through grain boundaries’, Acta Mater., 2000, 48, 4917-4927.CrossRefGoogle Scholar
  7. [7] M. Marx, W. Schaef and H. Vehoff: ‘Interaction of short cracks with the local microstructure’, Proc. Eng., 2010, 2, 163-171.CrossRefGoogle Scholar
  8. [8] M. Söker, O. Schönfeld, B. Dönges, A. Giertler and U. Krupp: ‘Ermüdungsverhalten von Duplex-Stählen unter Atmosphäreneinfluss’, Tagungsband ‘Werkstoffprüfung 2015’, Bad Neuenahr, Germany, 2015, Deutscher Verband für Materialforschung und -prüfung (DVM), 55-60.Google Scholar
  9. [9] R. Lillbacka, G. Chai, M. Ekh, P. Liu, E. Johnson and K. Runesson: ‘Cyclic stress–strain behavior and load sharing in duplex stainless steels: Aspects of modeling and experiments’, Acta Mater., 2007, 55, 53-59.Google Scholar
  10. [10] U. Krupp, A. Giertler, M. C. Marinelli, H. Knobbe, H.-J. Christ, P. Köster, C.-P. Fritzen, S. Herenu and I. Alvarez-Armas: ‘Efficiency of Grain and Phase Boundaries as Microstructural Barriers during HCF and VHCF Loading of Austenitic-Ferritic Duplex Steel’, Proc. 5th Int. Conf. on ‘Very High Cycle Fatigue’, Berlin, Germany, June 2011, C. Berger and H.-J. Christ, 127-132.Google Scholar
  11. [11] U. Krupp, M. Söker, A. Giertler, B. Dönges, H.-J. Christ, K. Wackermann, T. Boll, M. Thuvander and M. C. Marinelli: ‘The potential of spinodal ferrite decomposition for increasing the very high cycle fatigue strength of duplex stainless steel’, Int. J. Fatigue,  https://doi.org/10.1016/j.engfracmech.2015.03.024.CrossRefGoogle Scholar
  12. [12] J. K. Sahu, U. Krupp, R. N. Ghosh and H.-J. Christ: ‘Effect of 475°C embrittlement on the mechanical properties of duplex stainless steel’, Mater. Sci. Eng., 2009, A 508, 1-14.CrossRefGoogle Scholar
  13. [13] W. N. J. Sharpe: ‘A High-frequency High-temperature Optical Strain/Displacement Gage’, Exp. Mech., 2010, 50, 227-237.CrossRefGoogle Scholar
  14. [14] W. N. J. Sharpe: ‘High-Frequency High-Temperature Strain/Displacement Gage’, DARPA Contract No: FA8650-04-5212 (Final Report), 2007.Google Scholar
  15. [15] M. Söker, M. Galster, B. Dönges and U. Krupp: ‘Ultrasonic fatigue testing in the scanning electron microscope’, Materials Testing, Fatigue Testing, 2016, 58, 97-101.CrossRefGoogle Scholar
  16. [16] U. Krupp, H. Knobbe, H.-J. Christ, P. Köster and C.-P. Fritzen: ‘The significance of microstructural barriers during fatigue of a duplex steel in the high- and very-high-cycle-fatigue (HCF/VHCF) regime’, Int. J. Fatigue, 2010, 32, 914–920.CrossRefGoogle Scholar
  17. [17] W. Reick, M. Pohl and A. F. Padilha: ‘Determination of stacking fault energy of austenite in a duplex stainless steel’, Steel Res., 1996, 67, 253-256.CrossRefGoogle Scholar
  18. [18] Y. Qiao and A. S. Argon: ‘Cleavage cracking resistance of high angle grain boundaries in Fe–3%Si alloy’, Mech. Mater., 2003, 35, 313-331.CrossRefGoogle Scholar
  19. [19] G. I. Taylor and H. Quinney: ‘The Latent Energy Remaining in a Metal after Cold Working’, Proc. of the ‘Royal Soc. of London’, Series A, Containing Papers of a Mathematical and Physical Character, London, UK, January 1934, 143, 307-326.CrossRefGoogle Scholar
  20. [20] A. Giertler and U. Krupp: ‘Investigation of the damage mechanisms during very high cycle fatigue (VHCF) of a tempered carbon steel’, Proc. Struct. Integ. 2, 2016, 1207-1212.CrossRefGoogle Scholar
  21. [21] ‘Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution’, ASTM G48.Google Scholar
  22. [22] M. O. Speidel, S. E. Stanzl and E. Tschegg: ‘Ermüdung von Stahl X20Cr13. Rißwachstum bei Lastwechselfrequenzen von 10-3 Hz bis zu 21 KHz, Bestimmung des Grenzwertes ΔK0 mit Ultraschall’, Z. Werkstofftech., 1980, 11, 305-308.Google Scholar
  23. [23] E. Wendler-Kalsch and H. Gräfen (eds.): ‘Korrosionsschadenkunde’, 1998, Berlin, Heidelberg, Springer Verlag.Google Scholar
  24. [24] M. El May, T. Palin-Luc, N. Saintier and O. Devos: ‘Effect of corrosion on the high cycle fatigue strength of martensitic stainless steel X12CrNiMoV12-3’, Int. J. Fatigue, 2013, 47, 330-339.Google Scholar
  25. [25] B. Dönges and H.-J. Christ: ‘Hochzyklische Wechselverformungsexperimente in Vakuum und Laborluft zur Charakterisierung des Atmosphäreneinflusses auf das Ermüdungsverhalten eines austenitisch-ferritischen Duplex-Edelstahls’, Werkstoffprüfung 2014, Berlin, Germany, 2014, Deutscher Verband für Materialforschung und -prüfung (DVM), 79-84.Google Scholar
  26. [26] R. Wang, H. Mughrabi, S. McGovern, M. Rapp: ‘Fatigue of copper single crystals in vacuum and in air, I: Persistant slip bands and dislocation microstructures’, Mater. Sci. Eng., 1984, 65, 219-233.CrossRefGoogle Scholar
  27. [27] R. Wang, H. Mughrabi: ‘Fatigue of copper single crystals in vacuum and in air, II: Fatigue crack propagation’, Mater. Sci. Eng., 1984, 65, 235-243.CrossRefGoogle Scholar
  28. [28] M. Böhmer and P. Munz: ‘Das Dauerschwingverhalten metallischer Werkstoffe im Vakuum und in verschiedenen Gasatmosphären’, Metall-Verlag, 1970, 5, 446–455.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • T. Waurischk
    • 1
  • M. Söker
    • 1
  • A. Giertler
    • 1
  • N. Schönhoff
    • 1
  • M. Galster
    • 1
  • B. Dönges
    • 2
  • Hans-Jürgen Christ
    • 2
  • Ulrich Krupp
    • 1
    Email author
  1. 1.Institute of Materials Design and Structural IntegrityUniversity of Applied Sciences OsnabrückOsnabrückGermany
  2. 2.Institut für WerkstofftechnikUniversität SiegenSiegenGermany

Personalised recommendations