Advertisement

Fatigue behaviour of austenitic stainless steels in the VHCF regime

  • A. Grigorescu
  • P.-M. Hilgendorff
  • Martina Zimmermann
  • Claus-Peter Fritzen
  • Hans-Jürgen Christ
Chapter

Abstract

The focus of this work lies on the investigation of the fatigue properties of austenitic Cr-Ni steels in the HCF and VHCF regime. This class of steels is characterized by low stacking fault energies which determine the main characteristics of deformation mechanisms (dislocation gliding, phase transformation). Three austenitic stainless steels, having distinct stacking fault energies and correspondingly distinct stabilities of the austenitic phase, were used in this study (304L, 316L and 904L). Other factors that influence the propensity of the materials for α’ martensite formation were also considered (e. g. temperature, strain rate/frequency). The metastable austenitic stainless steel 304L shows a very pronounced transient behaviour and a true durability without failure beyond 106 cycles. A comprehensive description of the microstructural changes governing the cyclic deformation is presented. The 316L steel has higher stacking fault energy and its cyclic deformation is much less pronounced. The plastic shear is more localized and the topography investigations show the formation of deep intrusions where microcracks can be initiated. The propagation of such microcracks however is impeded by the α’ martensite formed within the slip bands. The fatigue tests using different frequencies show higher fatigue strength for samples tested at 20 kHz compared to those tested at 140 Hz. This can be explained by the dependency of the plastic strain amplitude on the strain rate which was experimentally demonstrated in this study. The highly stable steel 904L exhibits a decrease in fatigue strength in the VHCF regime with failures up to 5.5∙108 cycles. Microcracks initiate from twin boundaries with extremely few signs of plasticity and grow very inhomogeneously due to the strong barrier effect of neighboring grains. The effect of predeformation on the HCF and VHCF properties was also investigated in the case of the metastable grade 304L. The amount of the α’ martensite phase obtained by means of monotonic predeformation was deliberately adjusted in order to influence the fatigue properties of the material. The results show that the initial martensite content should be kept below 30 vol-% in order to obtain optimal HCF and VHCF properties. For very high martensite contents (e.g. 60 vol-%) internal cracks are initiated and the fatigue life is strongly determined by the local stress and the geometry of the crack initiating inclusions.

Keywords

Very high cycle fatigue α’ martensite formation cyclic deformation fatigue crack initiation short fatigue crack propagation fish-eye fracture surface 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] C. Bathias: ‘Piezoelectric fatigue testing machines and devices’, Int. J. Fatigue, 2006, 28, 1438-1445.CrossRefGoogle Scholar
  2. [2] Y. Murakami, N. N. Yokoyama and J. Nagata: ‘Mechanism of fatigue failure in ultralong life regime’, Fatigue Fract. Eng. M. Struct., 2002, 25, 735-746.Google Scholar
  3. [3] S. Stanzl-Tschegg, H. Mughrabi and B. Schönbauer: ‘Life time and cyclic slip of copper in the VHCF regime’, Int. J. Fatigue, 2007, 29, 2050-2059.Google Scholar
  4. [4] C. Bathias, L. Drouillac and P. Le Francois: ‘How and why the fatigue S-N curve does not approach a horizontal asymptote’, Int. J. Fatigue, 2001, 23, 143-151.CrossRefGoogle Scholar
  5. [5] M. Zimmermann: ‘Diversity of damage evolution during cyclic loading at very high numbers of cycles – An overview’, Int. Mater. Rev., 2012, 57, 73-91.CrossRefGoogle Scholar
  6. [6] P. Lukas and L. Kunz: ‘Specific features of high-cycle and ultra-high-cycle fatigue’, Fatigue Fract. Eng. M. Struct., 2002, 25, 747-753.Google Scholar
  7. [7] H. Mughrabi: ‘On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultra-high-cycle fatigue’, Fatigue Fract. Eng. M. Struct., 2002, 25, 755-764.Google Scholar
  8. [8] C. Müller-Bollenhagen, M. Zimmermann and H.-J. Christ: ‘Adjusting the very high cycle fatigue properties of a metastable austenitic stainless steel by means of the martensite content’, Proc. Eng., 2010, 2, 1663-1672.CrossRefGoogle Scholar
  9. [9] G. B. Olson and M. Cohen: ‘Kinetics of strain-induced martensitic nucleation’, Metall. Mater. Trans. A, 1975, 6, 791-795.CrossRefGoogle Scholar
  10. [10] K. Takahashi and T. Ogawa: ‘Evaluation of gigacycle fatigue properties of austenitic stainless steels using ultrasonic fatigue test’, J. Solid Mech. Mater. Eng., 2008, 2, 366-373.CrossRefGoogle Scholar
  11. [11] J. V. Carstensen, H. Mayer and P. Brondsted: ‘Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel’, Fatigue Fract. Eng. M. Struct., 2002, 25, 837-844.Google Scholar
  12. [12] R. E. Schramm and R. P. Reed: ‘Stacking fault energy of seven commercial austenitic stainless steels’, Metall. Trans. A, 1975, 6, 1345-1351.Google Scholar
  13. [13] C. G. Rhodes and A. Thomson: ‘The composition dependence of stacking fault energy in austenitic stainless steels’, Metall. Trans. A, 1977, 8, 1901-1906.CrossRefGoogle Scholar
  14. [14] Q.-X Dai, A.-D. Wang, X.-N. Cheng and X.-M. Luo: ‘Stacking fault energy of cryogenic austenitic steels’, Chinese Physics, 2002, 11, 596-600.CrossRefGoogle Scholar
  15. [15] K. Nohara, Y. Ono and N. Ohashi: ‘Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels’, J. Iron Steel Inst. Jpn., 1977, 63, 772-782.CrossRefGoogle Scholar
  16. [16] A. K. De, J. G. Speer, D. K. Matlock, D. C. Murdock, M. C. Mataya and R. J. Comstock Jr.: ‘Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel’, Metall. Mater. Trans. A, 2006, 37, 1875-1885.CrossRefGoogle Scholar
  17. [17] S. Hecker, K. Stout, K. Staudhammer and J. Smith: ‘Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part 1. Magnetic measurements and mechanical behaviour’, Metall. Trans. A, 1982, 13, 619-626.CrossRefGoogle Scholar
  18. [18] W.-S. Lee and C.-F. Lin: ‘The morphologies and characteristics of impact-induced martensite in 304L stainless steel’, Scripta Mater., 2000, 43, 777-782.CrossRefGoogle Scholar
  19. [19] C. Müller-Bollenhagen, M. Zimmermann and H.-J. Christ: ‘Very high cycle fatigue behaviour of austenitic stainless steel and the effect of strain-induced martensite’, Int. J. Fatigue, 2010, 32, 936-942.CrossRefGoogle Scholar
  20. [20] C. Müller- Bollenhagen: ‘Verformungsinduzierte Martensitbildung bei mehrstufiger Umformung und deren Nutzung zur Optimierung der HCF- und VHCF-Eigenschaften von austenitischem Edelstahlblech‘, PhD thesis, Siegen, Siegener Werkstoffkundliche Berichte, 2011.Google Scholar
  21. [21] M. Hirao, H. Ogi, N. Suzuki and T. Ohtani: ‘Ultrasonic attenuation peak during fatigue of polycrystalline copper’, Acta Mater., 2000, 48, 517-524.CrossRefGoogle Scholar
  22. [22] G. Kurdjumov and G. Sachs: ‘Über den Mechanismus der Stahlhärtung‘, Z. Phys., 1930, 64, 325-343.Google Scholar
  23. [23] A. C. Grigorescu, P.-M. Hilgendorff, M. Zimmermann, C.-P. Fritzen and H.-J. Christ: ‘Cyclic deformation behaviour of austenitic Cr-Ni-steels in the VHCF regime: Part I – Experimental study’, Int. J. Fatigue, 2016, 93, 250-260.CrossRefGoogle Scholar
  24. [24] I. Nikitin and M. Besel: ‘Effect of low-frequency on fatigue behaviour of austenitic steel AISI 304 at room temperature and 25°C’, Int. J. Fatigue, 2008, 30, 2044-2049.CrossRefGoogle Scholar
  25. [25] T. Straub: ‘Experimental investigation of crack initation in face-centered cubic materials in the high and very high cycle fatigue regime’, PhD thesis, Schriftenreihe des Instituts für angewandte Materialien, Karlsruhe, 2016.Google Scholar
  26. [26] A. Grigorescu, A. Kolyshkin, M. Zimmermann and H.-J. Christ: ‘Effect of martensite content and geometry of inclusions on the VHCF properties of predeformed metastable austenitic stainless steels’, Struct. Integr. Proc., 2016, 2, 1093–1100.CrossRefGoogle Scholar
  27. [27] T. Sakai: ‘Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use’, J. Solid Mech. M. Eng., 2009, 3, 425-439.CrossRefGoogle Scholar
  28. [28] Y. Murakami: ‘Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions’, 2002, Elsevier, Oxford.CrossRefGoogle Scholar
  29. [29] K. H. Bowe, W. Hammerschmidt, E. Hornbogen and M. Hühner: ‘Bruchmechanische Eigenschaften von metastabilen Austeniten‘, Materialwiss. Werkstofftech., 1988, 19, 193-201.CrossRefGoogle Scholar
  30. [30] S. X. Li: ‘Effects of inclusions on very high cycle fatigue properties of high strength steels’, Int. Mater. Rev., 2012, 57, 92-114.CrossRefGoogle Scholar
  31. [31] H.-J. Christ, A. Grigorescu, A. Kolyshkin, E. Kaufmann and M. Zimmermann: ‘Prediction of size and position of fracture relevant defects of samples fatigued in the VHCF area on the basis of metallographic examinations’, Pract. Metallogr., 2016, 53, 435-449.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • A. Grigorescu
    • 1
  • P.-M. Hilgendorff
    • 2
  • Martina Zimmermann
    • 3
  • Claus-Peter Fritzen
    • 2
  • Hans-Jürgen Christ
    • 1
  1. 1.Institut für WerkstofftechnikUniversität SiegenSiegenGermany
  2. 2.Institut für Mechanik und Regelungstechnik – MechatronikUniversität SiegenSiegenGermany
  3. 3.Institut für WerkstoffwissenschaftTechnische Universität DresdenDresdenGermany

Personalised recommendations