Skip to main content

Fatigue behaviour of austenitic stainless steels in the VHCF regime

  • Chapter
  • First Online:
Fatigue of Materials at Very High Numbers of Loading Cycles

Abstract

The focus of this work lies on the investigation of the fatigue properties of austenitic Cr-Ni steels in the HCF and VHCF regime. This class of steels is characterized by low stacking fault energies which determine the main characteristics of deformation mechanisms (dislocation gliding, phase transformation). Three austenitic stainless steels, having distinct stacking fault energies and correspondingly distinct stabilities of the austenitic phase, were used in this study (304L, 316L and 904L). Other factors that influence the propensity of the materials for α’ martensite formation were also considered (e. g. temperature, strain rate/frequency). The metastable austenitic stainless steel 304L shows a very pronounced transient behaviour and a true durability without failure beyond 106 cycles. A comprehensive description of the microstructural changes governing the cyclic deformation is presented. The 316L steel has higher stacking fault energy and its cyclic deformation is much less pronounced. The plastic shear is more localized and the topography investigations show the formation of deep intrusions where microcracks can be initiated. The propagation of such microcracks however is impeded by the α’ martensite formed within the slip bands. The fatigue tests using different frequencies show higher fatigue strength for samples tested at 20 kHz compared to those tested at 140 Hz. This can be explained by the dependency of the plastic strain amplitude on the strain rate which was experimentally demonstrated in this study. The highly stable steel 904L exhibits a decrease in fatigue strength in the VHCF regime with failures up to 5.5∙108 cycles. Microcracks initiate from twin boundaries with extremely few signs of plasticity and grow very inhomogeneously due to the strong barrier effect of neighboring grains. The effect of predeformation on the HCF and VHCF properties was also investigated in the case of the metastable grade 304L. The amount of the α’ martensite phase obtained by means of monotonic predeformation was deliberately adjusted in order to influence the fatigue properties of the material. The results show that the initial martensite content should be kept below 30 vol-% in order to obtain optimal HCF and VHCF properties. For very high martensite contents (e.g. 60 vol-%) internal cracks are initiated and the fatigue life is strongly determined by the local stress and the geometry of the crack initiating inclusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • [1] C. Bathias: ‘Piezoelectric fatigue testing machines and devices’, Int. J. Fatigue, 2006, 28, 1438-1445.

    Article  Google Scholar 

  • [2] Y. Murakami, N. N. Yokoyama and J. Nagata: ‘Mechanism of fatigue failure in ultralong life regime’, Fatigue Fract. Eng. M. Struct., 2002, 25, 735-746.

    Google Scholar 

  • [3] S. Stanzl-Tschegg, H. Mughrabi and B. Schönbauer: ‘Life time and cyclic slip of copper in the VHCF regime’, Int. J. Fatigue, 2007, 29, 2050-2059.

    Google Scholar 

  • [4] C. Bathias, L. Drouillac and P. Le Francois: ‘How and why the fatigue S-N curve does not approach a horizontal asymptote’, Int. J. Fatigue, 2001, 23, 143-151.

    Article  Google Scholar 

  • [5] M. Zimmermann: ‘Diversity of damage evolution during cyclic loading at very high numbers of cycles – An overview’, Int. Mater. Rev., 2012, 57, 73-91.

    Article  CAS  Google Scholar 

  • [6] P. Lukas and L. Kunz: ‘Specific features of high-cycle and ultra-high-cycle fatigue’, Fatigue Fract. Eng. M. Struct., 2002, 25, 747-753.

    Google Scholar 

  • [7] H. Mughrabi: ‘On ‘multi-stage’ fatigue life diagrams and the relevant life-controlling mechanisms in ultra-high-cycle fatigue’, Fatigue Fract. Eng. M. Struct., 2002, 25, 755-764.

    Google Scholar 

  • [8] C. Müller-Bollenhagen, M. Zimmermann and H.-J. Christ: ‘Adjusting the very high cycle fatigue properties of a metastable austenitic stainless steel by means of the martensite content’, Proc. Eng., 2010, 2, 1663-1672.

    Article  Google Scholar 

  • [9] G. B. Olson and M. Cohen: ‘Kinetics of strain-induced martensitic nucleation’, Metall. Mater. Trans. A, 1975, 6, 791-795.

    Article  Google Scholar 

  • [10] K. Takahashi and T. Ogawa: ‘Evaluation of gigacycle fatigue properties of austenitic stainless steels using ultrasonic fatigue test’, J. Solid Mech. Mater. Eng., 2008, 2, 366-373.

    Article  Google Scholar 

  • [11] J. V. Carstensen, H. Mayer and P. Brondsted: ‘Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel’, Fatigue Fract. Eng. M. Struct., 2002, 25, 837-844.

    Google Scholar 

  • [12] R. E. Schramm and R. P. Reed: ‘Stacking fault energy of seven commercial austenitic stainless steels’, Metall. Trans. A, 1975, 6, 1345-1351.

    Google Scholar 

  • [13] C. G. Rhodes and A. Thomson: ‘The composition dependence of stacking fault energy in austenitic stainless steels’, Metall. Trans. A, 1977, 8, 1901-1906.

    Article  Google Scholar 

  • [14] Q.-X Dai, A.-D. Wang, X.-N. Cheng and X.-M. Luo: ‘Stacking fault energy of cryogenic austenitic steels’, Chinese Physics, 2002, 11, 596-600.

    Article  Google Scholar 

  • [15] K. Nohara, Y. Ono and N. Ohashi: ‘Composition and grain size dependencies of strain-induced martensitic transformation in metastable austenitic stainless steels’, J. Iron Steel Inst. Jpn., 1977, 63, 772-782.

    Article  CAS  Google Scholar 

  • [16] A. K. De, J. G. Speer, D. K. Matlock, D. C. Murdock, M. C. Mataya and R. J. Comstock Jr.: ‘Deformation-induced phase transformation and strain hardening in type 304 austenitic stainless steel’, Metall. Mater. Trans. A, 2006, 37, 1875-1885.

    Article  Google Scholar 

  • [17] S. Hecker, K. Stout, K. Staudhammer and J. Smith: ‘Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel: Part 1. Magnetic measurements and mechanical behaviour’, Metall. Trans. A, 1982, 13, 619-626.

    Article  CAS  Google Scholar 

  • [18] W.-S. Lee and C.-F. Lin: ‘The morphologies and characteristics of impact-induced martensite in 304L stainless steel’, Scripta Mater., 2000, 43, 777-782.

    Article  CAS  Google Scholar 

  • [19] C. Müller-Bollenhagen, M. Zimmermann and H.-J. Christ: ‘Very high cycle fatigue behaviour of austenitic stainless steel and the effect of strain-induced martensite’, Int. J. Fatigue, 2010, 32, 936-942.

    Article  Google Scholar 

  • [20] C. Müller- Bollenhagen: ‘Verformungsinduzierte Martensitbildung bei mehrstufiger Umformung und deren Nutzung zur Optimierung der HCF- und VHCF-Eigenschaften von austenitischem Edelstahlblech‘, PhD thesis, Siegen, Siegener Werkstoffkundliche Berichte, 2011.

    Google Scholar 

  • [21] M. Hirao, H. Ogi, N. Suzuki and T. Ohtani: ‘Ultrasonic attenuation peak during fatigue of polycrystalline copper’, Acta Mater., 2000, 48, 517-524.

    Article  CAS  Google Scholar 

  • [22] G. Kurdjumov and G. Sachs: ‘Über den Mechanismus der Stahlhärtung‘, Z. Phys., 1930, 64, 325-343.

    Google Scholar 

  • [23] A. C. Grigorescu, P.-M. Hilgendorff, M. Zimmermann, C.-P. Fritzen and H.-J. Christ: ‘Cyclic deformation behaviour of austenitic Cr-Ni-steels in the VHCF regime: Part I – Experimental study’, Int. J. Fatigue, 2016, 93, 250-260.

    Article  CAS  Google Scholar 

  • [24] I. Nikitin and M. Besel: ‘Effect of low-frequency on fatigue behaviour of austenitic steel AISI 304 at room temperature and 25°C’, Int. J. Fatigue, 2008, 30, 2044-2049.

    Article  CAS  Google Scholar 

  • [25] T. Straub: ‘Experimental investigation of crack initation in face-centered cubic materials in the high and very high cycle fatigue regime’, PhD thesis, Schriftenreihe des Instituts für angewandte Materialien, Karlsruhe, 2016.

    Google Scholar 

  • [26] A. Grigorescu, A. Kolyshkin, M. Zimmermann and H.-J. Christ: ‘Effect of martensite content and geometry of inclusions on the VHCF properties of predeformed metastable austenitic stainless steels’, Struct. Integr. Proc., 2016, 2, 1093–1100.

    Article  Google Scholar 

  • [27] T. Sakai: ‘Review and prospects for current studies on very high cycle fatigue of metallic materials for machine structural use’, J. Solid Mech. M. Eng., 2009, 3, 425-439.

    Article  Google Scholar 

  • [28] Y. Murakami: ‘Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions’, 2002, Elsevier, Oxford.

    Chapter  Google Scholar 

  • [29] K. H. Bowe, W. Hammerschmidt, E. Hornbogen and M. Hühner: ‘Bruchmechanische Eigenschaften von metastabilen Austeniten‘, Materialwiss. Werkstofftech., 1988, 19, 193-201.

    Article  CAS  Google Scholar 

  • [30] S. X. Li: ‘Effects of inclusions on very high cycle fatigue properties of high strength steels’, Int. Mater. Rev., 2012, 57, 92-114.

    Article  CAS  Google Scholar 

  • [31] H.-J. Christ, A. Grigorescu, A. Kolyshkin, E. Kaufmann and M. Zimmermann: ‘Prediction of size and position of fracture relevant defects of samples fatigued in the VHCF area on the basis of metallographic examinations’, Pract. Metallogr., 2016, 53, 435-449.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grigorescu, A., Hilgendorff, PM., Zimmermann, M., Fritzen, CP., Christ, HJ. (2018). Fatigue behaviour of austenitic stainless steels in the VHCF regime. In: Christ, HJ. (eds) Fatigue of Materials at Very High Numbers of Loading Cycles. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-24531-3_3

Download citation

Publish with us

Policies and ethics