Investigation of the infinite life of fibre-reinforced plastics using X-ray refraction topography for the in-situ, non-destructive evaluation of micro-structural degradation processes during cyclic fatigue loading

  • A. Müller
  • Volker TrappeEmail author
  • S. Hickmann
  • H.-P. Ortwein


The described investigation of carbon-fibre-reinforced plastics (CFRP) documents that damage evolution can be observed by means of X-ray refractography [1]. Comparative investigations with synchrotron technique on CFRP and grey-scale analysis on glass fibre-rein-forced-plastics (GFRP) confirm these results. Moreover it was found that the fracture mechanical properties of the matrix system influence damage nucleation and propagation in the laminate during static and fatigue loads. Single-step fatigue tests were carried out on laminates with RIM135 and LY556 matrix systems made from non-crimped fabric (NCF) or twill weave in different fibre orientations. The damage to the LY556 laminates was characterized by laminate cracks growing rapidly over the whole specimen width, whereas the damage on the RIM135 laminates was characterized by an earlier onset of micro-cracking followed by laminate cracks. The specimens were fatigued up to 108 (very high cycle fatigue (VHCF) regime) load cycles. S-N-curves of damage initiation were drawn and boundaries were identified for endurance within the VHCF regime. A phenomenology based model focusing on matrix stress was applied to reproduce the first inter-fibre failure (IFF) under static and fatigue loads.


Carbon fibrereinforced-plastics Fatigue Damage evolution X-ray refractography Very high cycle fatigue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] M. P. Hentschel, K.-W. Harbich and A. Lange: ‘Nondestructive evaluation of single fibre debonding in composites by X-ray refraction’, NDT&E Int., 1994, 27, 5, 275–280.CrossRefGoogle Scholar
  2. [2] J. Aboudi, S. M. Arnold and B. A. Bednarcyk: ‘Micromechanics of composite materials - a generalized mul-tiscale analysis approach’, 1st ed., Amsterdam , Boston, Elsevier/BH, Butterworth-Heinemann is an imprint of Elsevier, 2013.Google Scholar
  3. [3] C. Bathias and P. C. Paris: ‘Gigacycle fatigue in mechanical practice’, New York, Marcel Dekker, 2005.Google Scholar
  4. [4] R. Gasch and P. Bade (Eds.): ‘Windkraftanlagen - Grundlagen, Entwurf, Planung und Betrieb’, 4. vollst. überarb. und erw. Aufl., Wiesbaden, Teubner, 2005.Google Scholar
  5. [5] V. Trappe, S. Guenzel and M. Jaunich: ‘Correlation between crack propagation rate and cure process of epoxy resins’, Polym. Test, 2012, 31, 5, 654–659.CrossRefGoogle Scholar
  6. [6] V. Trappe and H. Ivers: ‘Determination of Inter-Fibre-Failure in Complex, Reinforced Composites’, E. E. Gdoutos (ed.): ‘Fracture of Nano and Engineering Materials and Structures’, 2006, Springer Netherlands, 775–776.Google Scholar
  7. [7] V. Trappe, M. Hentschel and H. Ivers: ‘Micro-mechanical properties of fiber composites characterized by X-ray refraction’, in R. E. Geer, N. Meyendorf and B. Michel (eds.): ‘Testing, Reliability, and Application of Micro- and Nano-Material Systems III’, vol. 5766, 2005, Bellingham, Spie-Int Soc Optical Engineering, 15–24.Google Scholar
  8. [8] A. Krimmer: ‘Mikromechanische Modellierung von Fasergelege-Kunststoff-Verbunden auf Basis von Norm-prüfungen unter Berücksichtigung der in-situ-Eigenschaften der Matrix’, PhD Thesis, TU Berlin, Berlin, Germany, Universitätsverlag der TU Berlin, 2014.Google Scholar
  9. [9] ‘Kunststoffe - Bestimmung der Zugeigenschaften - Teil 2: Prüfbedingungen für Form- und Extrusionsmassen’ (ISO 527-2:2012), DIN EN ISO 527-2:2012-06, Deutsche Fassung EN ISO 527-2:2012.Google Scholar
  10. [10] ‘Plastics - Determination of fracture toughness (GIC and KIC) - Linear elastic fracture mechanics (LEFM) approach’, ISO 13586:2000-03.Google Scholar
  11. [11] ‘Plastics - Determination of tension-tension fatigue crack propagation - Linear elastic fracture mechanics (LEFM) approach’, ISO 15850:2002-06.Google Scholar
  12. [12] D. Chapman, W. Thomlinson, R. E. Johnston, D. Washburn, E. Pisono, N. Gmür, Z. Zhong, R. Menk, F. Arfelli and D. Sayers: ‘Diffraction enhanced X-ray imaging’, Phys. Med. Biol., 1997, 42, 11, 2015–2025.Google Scholar
  13. [13] B. R. Mueller, A. Lange, M. Harwardt and M. P. Hentschel: ‘Synchrotron-Based Micro-CT and Refraction-Enhanced Micro-CT for Non-Destructive Materials Characterisation’, Adv. Eng. Mater., 2009, 11, 6, 435–440.CrossRefGoogle Scholar
  14. [14] A. Kupsch, A. Lange, M. P. Hentschel, Y. Onel, T. Wolk, A. Staude, K. Ehrig, B. R. Müller and G. Bruno: ‘Evaluating Porosity in Cordierite Diesel Particulate Filter Materials, Part 1 X-ray Refraction’, J. Ceram. Sci. Technol., 2013, 4, 4, 169–175.Google Scholar
  15. [15] V. Trappe, A. Müller and S. Hickmann: ‘Infinite life of CFRP evaluated non-destructively with X-ray-refraction topography in-situ mechanical loading’, in 19th WCNDT 2016: World Conference on Non-Destructive Testing ; 13 - 17 June, Germany, München, 2016.Google Scholar
  16. [16] V. Trappe, S. Hickmann and H. Sturm: ‘Evaluation of inter fibre fracture in textile glass fibre composites by X-ray refraction topography’, Mater. Test.-Mater. Comp. Techn. Appl., 2008, 50, 10, 615–622.Google Scholar
  17. [17] F. Gao, L. Boniface, S. L. Ogin, P. A. Smith and R. P. Greaves: ‘Damage accumulation in woven-fabric CFRP laminates under tensile loading: Part 1. Observations of damage accumulation’, Comp. Sci. Technol., 1999, 59, 1, 123–136.CrossRefGoogle Scholar
  18. [18] V. Trappe and K.-W. Harbich: ‘Intralaminar fatigue behaviour of carbon fibre reinforced plastics’, Int. J. Fatigue, 2006, 28, 10, 1187–1196.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • A. Müller
    • 1
  • Volker Trappe
    • 1
    Email author
  • S. Hickmann
    • 1
  • H.-P. Ortwein
    • 1
  1. 1.Bundesanstalt für Materialforschung und Prüfung (BAM)BerlinGermany

Personalised recommendations