Influence of ceramic particles and fibre reinforcement in metal-matrix-composites on the VHCF behaviour. Part I: Experimental investigations of fatigue and damage behaviour

  • A. Illgen
  • M. Baaske
  • Felix BallaniEmail author
  • Anja Weidner
  • H. Biermann


High performance materials can be exposed to high frequency cyclic loading conditions during technical operation. In particular, small strains operating in the very high cycle fatigue (VHCF)-regime lead to accumulative damage. Thus, appropriate local deformation on discontinuities such as porosities, inclusions, and secondary phase reinforcements lead to crack initiation and to final fatal fracture. Concurrently, quite high requirements with regard to high number of cycles are demanded for many applications. Because of the desire for high strength at low density, fibre or particulate aluminium matrix composites (Al-MMCs) were developed. Fields of application of these light-weight, but expensive materials, are e.g. in the automobile industry (e.g. engine blocks, cylinder heads, brakes). The fatigue behaviour of Al-MMCs reinforced by alumina particles (15 vol. % Al2O3) or short fibres (20 vol. % Saffil) was extensively studied in earlier work in the low cycle fatigue (LCF) and high cycle fatigue (HCF) range. Therefore, present studies are focused on investigations in the very high cycle fatigue (VHCF) regime at stress amplitudes equal to or lower than 140 MPa to reach fatigue life of about 1010 cycles. All experiments were carried out using an ultrasonic fatigue testing device under symmetric loading conditions (R = – 1). Fatigue tests were complemented by in situ thermographic measurements to record the temperature of the whole specimen and to find “hot spots” indicating changes in microstructure and, therefore, the initiation or growth of cracks. Moreover, the resonant frequency as well as a nonlinearity parameter were evaluated to determine the initiation of damage. For a better understanding of the damage mechanism (matrix decohesion, matrix failure or failure of reinforcements) all fractured surfaces were investigated by scanning electron microscopy. The combination of these methods contributes to a better understanding of underlying mechanisms of damage in aluminium matrix composites.


Metal matrix composites Particle reinforcement Short fibre reinforcement Infrared ther-mography Damage mechanisms Very high cycle fatigue 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1] S. Suresh, A. Mortensen and A. Needleman: ‘Fundamentals of Metal-Matrix Composites’, 1993, Boston, UK, Butterworth-Heinemann.Google Scholar
  2. [2] K. K. Chawla: ‘Composite Materials-Science and Engineering’, 2nd edn., 1998, New York, Springer-Verlag.Google Scholar
  3. [3] K. U. Kainer: ‘Metal Matrix Composites’, 2003, Weinheim, WILEY-VCH.Google Scholar
  4. [4] T. W. Clyne and P. J. Withers: ‘An introduction to metal matrix composites’, 1993, Cambridge, Cambridge University Press.Google Scholar
  5. [5] L. F. Coffin Jr.: ‘A Study of the Effects of Cyclic Thermal Stress on a Ductile Metal’, Trans. ASME, 1954, 76, 931-950.Google Scholar
  6. [6] H.-Z. Ding, H. Biermann and O. Hartmann: ‘Low cycle fatigue crack growth and life prediction of short-fibre reinforced aluminium matrix composites’, Int. J. Fatigue, 2003, 25, 209-220.CrossRefGoogle Scholar
  7. [7] H.-Z. Ding, H. Biermann and O. Hartmann: ‘Low cycle fatigue model of short-fibre reinforced 6061 aluminium alloy metal matrix composite’, Comp. Sci. Technol., 2002, 62, 2189-2199.Google Scholar
  8. [8] O. Hartmann: ‘Einfluß der Matrix und der Form der Verstärkungen von Metallmatrix-Verbundwerkstoffen auf deren zyklisches Verformungsverhalten zwischen -100 °C und 300 °C’, PhD thesis, Technische Fakultät der Universität Erlangen-Nürnberg, Nürnberg, Germany, 2002.Google Scholar
  9. [9] H. Biermann and O. Hartmann: ‘Mechanical Behaviour and Fatigue Properties of Metal-matrix Composites’, K. U. Kainer (ed.): ‘Metal Matrix Composite. Custom-made Materials for Automotive and Aerospace Engineering’, 2006, Weinheim, Wiley-VCH, 173-196.Google Scholar
  10. [10] Q. Y. Wang, N. Kawagoishi and Q. Chen: ‘Fatigue and fracture behaviour of structural Al-alloys up to very long life regimes’, Int. J. Fatigue, 2006, 28, 1572-1576.CrossRefGoogle Scholar
  11. [11] Y. Takahashi, T. Shikama, S. Yoshihara, T. Aiura and H. Noguchi: ‘Study on dominant mechanism of high-cycle fatigue life in 6061-T6 aluminum alloy through microanalyses of mircrostructurally small cracks’, Acta Mater., 2012, 60, 2554-2567.CrossRefGoogle Scholar
  12. [12] Y. Ochi, K. Masaki, T. Matsumura and M. Wadasako: ‘Effects of volume fraction of alumina short fibers on high cycle fatigue properties of Al and Mg alloy composites’, Mater. Sci. Eng. A, 2007, 468-470, 230-236.Google Scholar
  13. [13] Q. Y. Wang, C. Bathias, N. Kawagoishi and Q. Chen: ‘Effect of inclusions on subsurface crack initiation and gigacycle fatigue strength’, Int. J. Fatigue, 2002, 24, 1269-1274.CrossRefGoogle Scholar
  14. [14] Z. Yang, S. X. Li, J. Zhang, J. Zhang, G. Li, Z. Li, W. Hui and Y. Weng: ‘The fatigue behaviors of zero-inclusion and commercial 42CrMo steels in the super-long fatigue life regime’, Acta Mater., 2004, 52, 5235-5241.CrossRefGoogle Scholar
  15. [15] Y. Murakami, N. N. Yokoyama and J. Nagata: ‘Mechanism of fatigue failure in ultralong life regime’, Fatigue Fract. Eng. M., 2002, 25, 735-764.Google Scholar
  16. [16] M. Papakyriacou, H. Mayer, S. Stanzl-Tschegg and M. Gröschl: ‘Fatigue properties of Al2O3-particle-rein-forced 6061aluminium alloy in the high-cycle regime’, Int. J. Fatigue, 1996, 18, 475-481.Google Scholar
  17. [17] X. Liu and C. Bathias: ‘Fatigue damage development in AI203/AI composite’ Composites, 1993, 24, 282-287.Google Scholar
  18. [18] G. Liu and J. Shang: ‘Fatigue Crack Tip Opening Behavior in Particulate Reinforced Al-Alloy Composites’, Acta Mater., 1996, 44, 79-91.CrossRefGoogle Scholar
  19. [19] N. Chawla and K. K. Chawla: ‘Metal Matrix Composites’, 2nd edn., 2013, New York, Springer.CrossRefGoogle Scholar
  20. [20] D. A. Lukasak and D. Koss: ‘Microstructural influences on fatigue crack initiation in a model particulate reinforced aluminium alloy MMC’, Composites, 1993, 24, 261–269.CrossRefGoogle Scholar
  21. [21] E. Y. Chen, L. Lawson and M. Meshii: ‘The distribution of fatigue microcracks in an aluminum-matrix silicon carbide whisker composite’, Scripta Metall. Mater., 1994, 30, 737–742.CrossRefGoogle Scholar
  22. [22] A. R. Vaidya and J. J. Lewandowski: ‘Effects of SiC particle size and volume fraction on the high cycle fatigue behavior of AZ91D magnesium alloy composites’, Mater. Sci. Eng., 1996, A220, 85-92.Google Scholar
  23. [23] Y. Uematsu, K. Tokaji and M. Kawamura: ‘Fatigue behaviour of SiC-particulate-reinforced aluminium alloy composites with different particle sizes at elevated temperatures’, Comp. Sci. Technol., 2008, 68, 2785-2791.CrossRefGoogle Scholar
  24. [24] E. Allison and J. W. Jones: ‘Fatigue behavior of discontinuously reinforced metal-matrix composites’, A. Mortensen and A. Needleman (eds.): ‘Fundamentals of Metal Matrix Composites’, 1993, Boston, Butter-worth-Heinemann, 269-294.CrossRefGoogle Scholar
  25. [25] J. Llorca: ‘Fatigue of particle- and whisker-reinforced metal-matrix composites’, Prog. Mater. Sci., 2002, 47, 283-353.Google Scholar
  26. [26] H. Mayer, M. Fitzka and R. Schuller: ‘Constant and variable amplitude ultrasonic fatigue of 2024-T351 aluminium alloy at different load ratios’, Ultrasonics, 2013, 53, 1425–1432.Google Scholar
  27. [27] D. Krewerth, A. Weidner and H. Biermann: ‘Application of in situ thermography for evaluating the high-cycle and very high-cycle fatigue behaviour of cast aluminium alloy AlSi7Mg (T6)’, Ultrasonics, 2013, 53, 1441-1449.CrossRefGoogle Scholar
  28. [28] D. Krewerth, T. Lippmann, A. Weidner and H. Biermann: ‘Application of full-surface view in situ thermography measurements during ultrasonic fatigue of cast steel G42CrMo4’, Int. J. Fatigue, 2015, 80, 459–467.CrossRefGoogle Scholar
  29. [29] L. Bodelot, L. Sabatier, E. Charkaluk and P. Dufrénoy: ‘Experimental setup for fully coupled kinematic and thermal measurements at the microstructure scale of an AISI 316L steel’, Mater. Sci. Eng. A, 2009, 501, 52–60.CrossRefGoogle Scholar
  30. [30] L. Bodelot, E. Charkaluk, L. Sabatier and P. Dufrénoy: ‘Experimental study of heterogeneities in strain and temperature fields at the microstructural level of polycrystalline metals through fully-coupled full-field measurements by Digital Image Correlation and Infrared Thermography’, Mech. Mater., 2011, 43, 654–670.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  • A. Illgen
    • 1
  • M. Baaske
    • 2
  • Felix Ballani
    • 2
    Email author
  • Anja Weidner
    • 1
  • H. Biermann
    • 1
  1. 1.Institut für WerkstofftechnikTechnische Universität Bergakademie FreibergFreibergGermany
  2. 2.Institut für StochastikTechnische Universität Bergakademie FreibergFreibergGermany

Personalised recommendations