Advertisement

Experimental and numerical investigations on crack initiation and crack growth under constant and variable amplitude loadings in the VHCF regime

  • Manuela SanderEmail author
  • C. Stäcker
  • T. Müller
Chapter

Abstract

For a fatigue strength assessment of safety-relevant components subjected to a very high number of cycles, it has to be considered that the fatigue limit is decreased and the crack initiation site is changed. Because the investigations in this field are mainly limited to constant amplitude loadings without mean stresses, within this research project experimental, numerical and analytical investigations are focused on the influences of variable amplitude loadings on the crack initiation site, the crack growth and the lifetime for a high-strength steel. Therefore, experiments with different repeated two-step loadings as well as standardized load-time-histories have been performed, which have different amounts of small amplitudes beneath the experimentally determined fatigue strength of the investigated material. In addition to the experimental results, complex elastic-plastic finite element simulations have been performed in order to investigate the influence of the mean stresses on the crack closure behaviour. Moreover, the experimental results are used to evaluate different analytical approaches for calculating fatigue lifetimes.

Keywords

fatigue crack initiation crack growth variable amplitude loading mean stress effect crack closure very high cycle fatigue Palmgren-Miner rule 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1] C. Bathias: ‘There is no infinite fatigue life in metallic materials’, Fatigue Fract. Eng. M., 1999, 7, 559–565.CrossRefGoogle Scholar
  2. [2] S. Nishijima and K. Kanazawa: ‘Stepwise S-N curve and fish-eye failure in gigacycle fatigue’, Fatigue Fract. Eng. M., 1999, 7, 601–607.Google Scholar
  3. [3] K. Shiozawa, M. Murai, Y. Shimatani and T. Yoshimoto: ‘Transition of fatigue failure mode of Ni–Cr–Mo low-alloy steel in very high cycle regime’, Int. J. Fatigue, 2010, 3, 541–550.CrossRefGoogle Scholar
  4. [4] Y. Murakami, T. Nomoto and T. Ueda: ‘On the mechanism of fatigue failure in the superlong life regime (N>107 cycles). Part 1’, Fatigue Fract. Eng. M., 2000, 11, 893–902.Google Scholar
  5. [5] T. Sakai, Y. Sato and N. Oguma: ‘Characteristic S-N properties of high-carbon-chromium-bearing steel under axial loading in long-life fatigue’, Fatigue. Fract. Eng. M., 2002, 8-9, 765–773.Google Scholar
  6. [6] H. Mughrabi: ‘Fatigue, an everlasting materials problem - still en vogue’, Proc. Eng., 2010, 1, 3–26.CrossRefGoogle Scholar
  7. [7] E. Bayraktar, I. M. Garcias and C. Bathias: ‘Failure mechanisms of automotive metallic alloys in very high cycle fatigue range’, Int. J. Fatigue, 2006, 11, 1590–1602.CrossRefGoogle Scholar
  8. [8] T. Sakai, M. Takeda and N. Oguma: ‘Effect of strength level on fatigue property of several structural steels in ultra-wide life region’, 8th Int. Fatigue Congress, Stockholm, Sweden, 3-7 June, 2002.Google Scholar
  9. [9] B. Pyttel, D. Schwerdt and C. Berger: ‘Very high cycle fatigue – Is there a fatigue limit?’, Int. J. Fatigue, 2011, 1, 49–58.CrossRefGoogle Scholar
  10. [10] Y. Murakami: ‘Metal fatigue - Effects of small defects and nonmetallic inclusions’, 2002, Amsterdam, Elsevier.CrossRefGoogle Scholar
  11. [11] K. Tanaka and Y. Akiniwa: ‘Fatigue crack propagation behaviour derived from S-N data in very high cycle regime’, Fatigue Fract. Eng. M., 2002, 8-9, 775–784.Google Scholar
  12. [12] S. Fujita and Y. Murakami: ‘A new nonmetallic inclusion rating method by positive use of hydrogen embrittlement phenomenon’, Metall. Mater. Trans. A, 2013, 1, 303–322.CrossRefGoogle Scholar
  13. [13] Y. Murakami, J. Nagata and H. Matsunaga: ‘Factors affecting ultralong life fatigue and design method for components’, 9th Intern. Fatigue Congress, Atlanta, Georgia, USA. 14-19 May, 2006.Google Scholar
  14. [14] K. Shiozawa, Y. Morii, S. Nishino and L. Lu: ‘Subsurface crack initiation and propagation mechanism in high-strength steel in a very high cycle fatigue regime’, Int. J. Fatigue, 2006, 11, 1521–1532.CrossRefGoogle Scholar
  15. [15] T. Sakai, Y. Sato, Y. Nagano, M. Takeda and N. Oguma: ‘Effect of stress ratio on long life fatigue behavior of high carbon chromium bearing steel under axial loading’, Int. J. Fatigue, 2006, 11, 1547–1554.CrossRefGoogle Scholar
  16. [16] T. Ogawa, S. Stanzl-Tschegg and B. M. Schönbauer: ‘A fracture mechanics approach to interior fatigue crack growth in the very high cycle regime’, Eng. Fract. Mech., 2014, 241–254.CrossRefGoogle Scholar
  17. [17] S. Issler, M. Bacher-Höchst and W. Haydn: ‘Fatigue design for components under variable amplitude loading in the very high cycle fatigue area’, 2nd Int. Conf. on ‘Material and Component Performance under Variable Amplitude Loading’, Berlin, Germany, 2009.Google Scholar
  18. [18] L. Lu and K. Shiozawa: ‘Effect of two-step load variation on giga-cycle fatigue and internal crack growth behaviour of high carbon-chromium bearing steel’, 3th Int. Conference of Very High Cycle Fatigue, Kusatsu, Japan, 16-19 September, 2004.Google Scholar
  19. [19] H. Mayer, W. Haydn, R. Schuller, S. Issler and M. Bacher-Höchst: ‘Very high cycle fatigue properties of bainitic high carbon–chromium steel under variable amplitude conditions’, Int. J. Fatigue, 2009, 8-9, 1300–1308.Google Scholar
  20. [20] H. Mayer, S. Stojanovic, C. Ede and B. Zettl: ‘Beitrag niedriger Lastamplituden zur Ermüdungsschädigung von 0,15 %C Stahl’, Materialwiss. Werkst., 2007, 8, 581–590.CrossRefGoogle Scholar
  21. [21] M. Meischel, S. Stanzl-Tschegg, A. Arcari, N. Iyyer, N. Apetre and N. Phan: ‘Constant and variable-amplitude loading of aluminum alloy 7075 in the VHCF regime’, Proc. Eng., 2015, 501–508.Google Scholar
  22. [22] T. Müller and M. Sander: ‘On the use of ultrasonic fatigue testing technique-variable amplitude loadings and crack growth monitoring’, Ultrasonics, 2013, 8, 1417–1424.CrossRefGoogle Scholar
  23. [23] M. Sander, T. Müller and J. Lebahn: ‘Influence of mean stress and variable amplitude loading on the fatigue behaviour of a high-strength steel in VHCF regime’, Int. J. Fatigue, 2014, 10–20.CrossRefGoogle Scholar
  24. [24] M. Sander, T. Müller and C. Stäcker: ‘Very high cycle fatigue behavior under constant and variable amplitude loading’, Proc. Struct. Integ., 2016, 34–41.CrossRefGoogle Scholar
  25. [25] Deutsche Edelstahlwerke: ‘Werkstoffdatenblatt - 34CrNiMo6’; available at https://www.dewstahl.com/fileadmin/files/dewstahl.com/documents/Publikationen/Werkstoffdatenblaetter/Baustahl/1.6582_de.pdf (accessed 8 February 2017).
  26. [26] T. Müller: ‘Einfluss variabler Amplitudenbelastungen auf die Rissinitiierung und das Risswachstum im Bereich sehr hoher Lastwechselzahlen’, PhD thesis, University of Rostock, Rostock, 2016.Google Scholar
  27. [27] M. Luke, I. Varfolomeev, K. Lütkepohl and A. Esderts: ‘Fracture mechanics assessment of crack propagation in railway axle steels under fully reversed variable amplitude loading’, In: C. M. Sosino (eds.): ‘Proceedings / Second International Conference on Material and Component Performance under Variable Amplitude Loading’, 2009, DVM, Berlin, 259–268.Google Scholar
  28. [28] W. J. Dixon and A. M. Mood: ‘A method for obtaining and analyzing sensitivity data’, J. Am Stat Assoc., 1948, 241, 109.CrossRefGoogle Scholar
  29. [29] M. Hück: ‘Ein verbessertes Verfahren für die Auswertung von Treppenstufenversuchen’, Materialwiss. Werkst., 1983, 12, 406–417.CrossRefGoogle Scholar
  30. [30] Forschungskuratorium Maschinenbau: ‘Analytical Strength Assessment of components, FKM Guideline’, VDMA-Verlag, Frankfurt, 2013.Google Scholar
  31. [31] T. Beck, S. Kovacs and L. Singheiser: ‘Influence of high mean stresses on lifetime and damage of the martensitic steel X10CrNiMoV12-2-2 in the VHCF-regime’, 13th Int. Conference on Fracture, Beijing, China. 16-21 June, 2013.Google Scholar
  32. [32] T. Müller and M. Sander: ‘Investigation of variable amplitude loading and stress ratio in the very high cycle fatigue regime using micro-notched specimens’, Proc. Eng., 2015, 322–329.CrossRefGoogle Scholar
  33. [33] T. Müller and M. Sander: ‘Experimental and analytical study of the effect of variable amplitude loadings in VHCF regime’, CD-ROM Proc. 13th International Conference on Fracture, Beijing, China, 2013.Google Scholar
  34. [34] Nano Structuring Center, University of Kaiserslautern, 2016.Google Scholar
  35. [35] S. Kovacs, T. Beck and L. Singheiser: ‘Influence of mean stresses on fatigue life and damage of a turbine blade steel in the VHCF-regime’, Int. J. Fatigue, 2013, 90–99.CrossRefGoogle Scholar
  36. [36] H. Mayer, R. Schuller, U. Karr, M. Fitzka, D. Irrasch, M. Hahn and M. Bacher-Höchst: ‘Mean stress sensitivity and crack initiation mechanisms of spring steel for torsional and axial VHCF loading’, Int. J. Fatigue, 2016.Google Scholar
  37. [37] Y.-D. Li, L.-L. Zhang, Y.-H. Fei, X.-Y. Liu and M.-X. Li: ‘On the formation mechanisms of fine granular area (FGA) on the fracture surface for high strength steels in the VHCF regime’, Int. J. Fatigue, 2016, 402–410.CrossRefGoogle Scholar
  38. [38] T. Müller and M. Sander: ‘Experimental investigations and damage calculations of a load time history in the very high cycle fatigue’, AMR, 2014, 446–451.Google Scholar
  39. [39] J. Lemaitre and J.-L. Chaboche: ‘Mechanics of solid materials’, 1990, Cambridge, Cambridge University Press.Google Scholar
  40. [40] C. Benz: ‘Bewertung negativer Lastanteile bei der Ermüdungsrissausbreitung’. PhD thesis. University of Rostock, Rostock, Germany, 2015.Google Scholar
  41. [41] I. S. Putra and J. Schijve: ‘Crack opening stress measurements of surface cracks in 7075-T6 aluminum alloy plate specimen through electron fractography’, Fatigue Fract. Eng. M., 1992, 4, 323–338.CrossRefGoogle Scholar
  42. [42] V. McDonald: ‘Growth of surface cracks under cyclic loading’. Master thesis. Mississippi State University, Department of Mechanical Engineering, 2000.Google Scholar
  43. [43] K. Solanki, S. R. Daniewicz and J. C. Newman Jr.: ‘Finite element analysis of plasticity-induced fatigue crack closure’, Eng. Fract. Mech., 2004, 2, 149–171.Google Scholar
  44. [44] J. C. Newman: ‘A crack opening stress equation for fatigue crack growth’, Int. J. Fracture, 1984, 4, R131-R135.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lehrstuhl für StrukturmechanikUniversität RostockRostockGermany

Personalised recommendations