Advertisement

VPC.plus 2014 pp 242-260 | Cite as

A New Fast Method Combining Testing and Gas Exchange Simulations Applied to an Innovative Product Aimed to Increase Low-End Torque on Highly Downsized Engines

  • Jérôme MigaudEmail author
  • Vincent Raimbault
  • Haitham Mezher
  • David Chalet
  • Thomas Grandin
Conference paper
  • 756 Downloads
Part of the Proceedings book series (PROCEE)

Zusammenfassung

In order to reduce fuel consumption and as a consequence CO2 emissions, it is still necessary to downsize combustion engines with the help of turbocharging coupled with down-speeding. Air intake systems still have a major contribution to the performance characteristics seen in such engines.

Schlüsselwörter

Combustion engines turbocharging low end torque CO2 reduction innovative products methodology testing simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. [1] DZUNG, L., Pressure pulsation at the intake of a supercharged internal combustion engine, Brown Boveri Rev, Vol. 39, pp. 295-305, 1952.Google Scholar
  2. [2] RYTI, M., Pulsation in the air intake systems of turbocharged diesel engines, Brown Boveri Rev, Vol. 52 (1-2-3), pp. 190, 1965.Google Scholar
  3. [3] AUBIN, S.; PRINCIVALLE, R.; SCHWEIKERT, S.; LEFEVRE, T.; PURWANTO, A., Supercharging System of an Internal Combustion Engine at Low Revolution Regime by Means of a Compressor Driven by an Electric Motor, Strasbourg – Pole Formation / CCI de Strasbourg: SIA, Société des Ingénieurs de l’Automobile, The Spark Ignition Engine of the Future, December 4 & 5, 2013.Google Scholar
  4. [4] TAVERNIER, S.; EQUOY, S.; BIWERSI, S., Optimized E-booster applied to a downsized internal combustion engine: design and characterization, Strasbourg – Pole Formation / CCI de Strasbourg: SIA, Société des Ingénieurs de l’Automobile, The Spark Ignition Engine of the Future, December 4 & 5, 2013.Google Scholar
  5. [5] KAUFMANN, M.; ARDEY, N.; STÜTZ, W., The New Cornerstones of the BMW Diesel Engine Portfolio, Lissabon: 21st Aachen Colloquium Automobile and Engine Technology, pp.23 -46, 10 October, 2012.Google Scholar
  6. [6] WINTERBONE, D.E.; PEARSON, R.J., Theory of Engine Manifold Design: Wave Action Methods for IC Engines, Professional Engineering Publishing, 2000.Google Scholar
  7. [7] TAYLOR, J.; GURNEY, D.; FREELAND, P.; DINGELSTADT, R.; STEHLIG, J.; BRUGGESSE, V., Intake Manifold Length Effects on Turbocharged Gasoline Downsizing Engine Performance and Fuel Economy, Detroit, MI: SAE no.2012-01-0714,  https://doi.org/10.4271/2012-01-0714, 2012.
  8. [8] WATSON, N., Resonant intake and variable geometry tubocharging systems for a V-8 diesel engine, J. Power Energy, vol. 197, Proc. Instn Mech. Engrs., Part A, pp. 27-36, 1983.CrossRefGoogle Scholar
  9. [9] SATO, A.; SUENAGA, K.; NODA, M.; MAEDA, Y., “Advanced boost-up in Hino EP100-II turbocharged and charge-cooled diesel engine,” SAE, no. paper 870298, 198.Google Scholar
  10. [10] P. FONTANA and B. HUURDEMAN, A new evaluation method for the thermodynamic behavior of air intake systems, SAE 2005-01-1136, 2005.Google Scholar
  11. [11] CHALET, D.; MAHE, A.; MIGAUD, J.; HETET, J.F., A frequency modeling of the pressure waves in the inlet manifold of internal combustion engine, Applied Energy, Vol. 88(9), pp. 2988-2994, ISSN 0306-2619,  https://doi.org/10.1016/j.apenergy.2011.03.036, 2011.CrossRefGoogle Scholar
  12. [12] MEZHER, H.; CHALET, D.; MIGAUD, J.; CHESSE, P.; RAIMBAULT, V., Transfer matrix computation wave action simulation in an internal combustion engine – ASME 2012 11th Biennal Conference on Engineering Systems Design and Analysis, Nantes, France: ESDA2012-82579, 2-4 July 2012.Google Scholar
  13. [13] MEZHER, H.; CHALET, D.; MIGAUD, J.; RAIMBAULT, V.; CHESSE, P., Transfer matrix measurements for studying intake wave dynamics applied to charge air coolers with experimental engine validation in the frequency domain and the time domain, Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering,  https://doi.org/10.1177/0954407012474630, May 21, 2013.Google Scholar
  14. [14] HEYWOOD, J., Internal Combustion Engine Fundementals, MacGraw-Hill, 1988.Google Scholar
  15. [15] OSTROWSKI, G.; NEELY, G.; CHADWELL, C.; MEHTA, D.; WETZEL, P., Downspeeding and Supercharging a Diesel Passenger Car for Increased Fuel Economy, SAE no. 2012-01-0704,  https://doi.org/10.4271/2012-01-0704 , 2012.
  16. [16] BUHL, H.; KRATZSCH, M.; GUNTER, M.; PIETROWSKI, H., Potential of variable intake manifolds to reduce CO2 emissions in part load, MTZ Worldwide, Volume 74, Issue 11, pp. 24-29, 2013.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Jérôme Migaud
    • 1
    Email author
  • Vincent Raimbault
    • 1
  • Haitham Mezher
    • 2
  • David Chalet
    • 2
  • Thomas Grandin
    • 1
  1. 1.MANN+HUMMEL France SASLavalFrankreich
  2. 2.Ècole Centrale de NantesNantesFrankreich

Personalised recommendations