Skip to main content

Einsatz alternativer Kraftstoffe im Powersportsegment am Beispiel eines MPFI-Motorradmotors

  • Conference paper
  • First Online:
11. Tagung Einspritzung und Kraftstoffe 2018

Part of the book series: Proceedings ((PROCEE))

  • 3804 Accesses

Zusammenfassung

Die kontinuierliche Steigerung des Verkehrsaufkommens, die lokal emissionsbedingte Belastung von Ballungszentren, der weltweit steigende Energiebedarf [1] und die Verknappung von Ressourcen führt, insbesondere im Sektor Mobilität, zum Umdenken von Gesetzgebern, Verbrauchern und Herstellern. Dies führt einerseits zur Verschärfung der Emissionslegislative und zur Steigerung des Umweltbewusstseins von Verbrauchern. Andererseits wird die Ausarbeitung von neuen Mobilitätskonzepten, alternativer Antriebssysteme und nachhaltiger Energiequellen forciert. Dieser Trend bezieht sich nicht nur auf die Forschung und Entwicklung von Personenkraftwagen, sondern ist auch im Zweiradsektor sichtbar.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. IEA, “World Energy Outlook 2017”, OECD Publishing, Paris/International Energy Agency, Paris, 2017, https://doi.org/10.1787/weo-2017-en.

  2. Stoffregen, J., „Motorradtechnik“, ATZ/MTZ-Fachbuch, Springer Vieweg, Wiesbaden (2018), https://doi.org/10.1007/978-3-658-07446-3, ISBN: 978-3-658-07446-3

    Book  Google Scholar 

  3. Gumpesberger, M., Landerl, C., Miritsch, J. et al., „Der Antrieb der neuen BMW F800“, MTZ Motortech Z (2006) 67: 420-429. https://doi.org/10.1007/BF03225397

    Article  Google Scholar 

  4. Johannsen, R., „Zukünftige Anforderungen der Abgasgesetzgebung an Motorräder“, ATZ Automobiltech Z (2013) 115: 432-435. https://doi.org/10.1007/s35148-013-0184-2

    Article  Google Scholar 

  5. Cathcart, G., Houston, R., and Ahern, S., “The Potential of Gasoline Direct Injection for Small Displacement 4-Stroke Motorcycle Applications,” SAE Technical Paper 2004-32-0098, 2004, https://doi.org/10.4271/2004-32-0098

  6. Oda, H., Tsutsumikoshi, S., and Shinkai, T., “Development of Variable Valve Timing & Lift Mechanism forMotorcycle,” SAE Technical Paper 93A099, 1993.

    Google Scholar 

  7. Taki, I., Nakamura, M., Nakama, K., Takahashi, K. et al., “Development of a Motorcycle Engine with a Three-dimensional Cam for Continuous Variable Valve Lift and Timing Mechanism,” SAE Int. J. Engines1(1):1357-1365, 2009, https://doi.org/10.4271/2008-32-0016

    Article  Google Scholar 

  8. [8] Tsukui, T., Tsutsumizaki, K., and Nakajima, M., “Development of the Directly Actuated Variable Valve Control System,” SAE Technical Paper 1999-01-3319, 1999, https://doi.org/10.4271/1999-01-3319

  9. Hadler J., Klauer N., Kallich S., „Emotionen und Emissionen“ (2015) Plenum. In: Liebl J., Beidl C. (eds) Internationaler Motorenkongress 2015. Proceedings. Springer Vieweg, Wiesbaden

    Google Scholar 

  10. Ch. Landerl, W. Mattes, G. Minicione, G. Unterweger, A. Friedrich: „Mehr Fahrspaß bei weniger Verbrauch – die Zukunft der Motorradantriebe von BMW Motorrad“, 14. Tagung “DER ARBEITSPROZESS DES VERBRENNUNGSMOTORS”, Technische Universität Graz, 2013

    Google Scholar 

  11. Merker, G. P., Teichmann, R., „Grundlagen Verbrennungsmotoren“, 8. Auflage, ATZ/MTZ-Fachbuch, ISBN 978-3-658-19211-2, https://doi.org/10.1007/978-3-658-19212-9

    Google Scholar 

  12. Gottschalk, W., Kirstein, G., Magnor, O., Schultalbers, M. et al., “Investigations on a Catalyst Heating Strategy by Variable Valve Train for SI Engines,” SAE Int. J. Engines 5(3):1177-1200, 2012, https://doi.org/10.4271/2012-01-1142

    Article  Google Scholar 

  13. Lohfink, C., Baecker, H., and Tichy, M., “Experimental Investigation on Catalyst-Heating Strategies and Potential of GDI Combustion Systems,” SAE Technical Paper 2008-01-2517, 2008, https://doi.org/10.4271/2008-01-2517

  14. Presti, M., Pace, L., Poggio, L., and Rossi, V., “Cold Start Thermal Management with Electrically Heated Catalyst: A Way to Lower Fuel Consumption,” SAE Technical Paper 2013-24-0158, 2013, https://doi.org/10.4271/2013-24-0158

  15. Eng, J., “The Effect of Spark Retard on Engine-out Hydrocarbon Emissions,” SAE Technical Paper 2005-01-3867, 2005, https://doi.org/10.4271/2005-01-3867

  16. Stan, C., Stanciu, A., Guenther, S., Martorano, L. et al., “Direct Injection Application on a Four-Stroke Motorcycle Engine,” SAE Technical Paper 2001-01-1818, 2001, https://doi.org/10.4271/2001-01-1818

  17. Cathcart, G., Houston, R., and Ahern, S., “The Potential of Gasoline Direct Injection for Small Displacement 4-Stroke Motorcycle Applications,” SAE Technical Paper 2004-32-0098, 2004, https://doi.org/10.4271/2004-32-0098

  18. Grabner, P., Eichlseder, H., and Eckhard, G., “Potential of E85 Direct Injection for Passengar Car Application” SAE Technical Paper 2010-01-2086, 2010.

    Google Scholar 

  19. Heywood, J.B., “Internal Combustion Engine Fundamentals,2 McGraw-Hill, ISBN 978-0071004992, 1988

    Google Scholar 

  20. Meyer, R. and Heywood, J., “Effect of Engine and Fuel Variables on Liquid Fuel Transport into the Cylinder in Port-Injected SI Engines,” SAE Technical Paper 1999-01-0563, 1999, https://doi.org/10.4271/1999-01-0563

  21. Meyer, R. and Heywood, J., “Evaporation of In-Cylinder Liquid Fuel Droplets in an SI Engine: A Diagnostic-Based Modeling Study,” SAE Technical Paper 1999-01-0567, 1999, https://doi.org/10.4271/1999-01-0567

  22. Meyer, R., Yilmaz, E., and Heywood, J., “Liquid Fuel Flow in the Vicinity of the Intake Valve of a Port-Injected SI Engine,” SAE Technical Paper 982471, 1998, https://doi.org/10.4271/982471

  23. Festel, G., “Biokraftstoffe in Deutschland – Produktionskosten und Marktchancen,“ Chemie Ingenieur Technik, 79: 605–612, 2007, https://doi.org/10.1002/cite.200600116

    Article  Google Scholar 

  24. Sileghem, L., Ickes, A., Wallner, T., and Verhelst, S., “Experimental Investigation of a DISI Production Engine Fuelled with Methanol, Ethanol, Butanol and ISO-Stoichiometric Alcohol Blends,” SAE Technical Paper 2015-01-0768, 2015, https://doi.org/10.4271/2015-01-0768.

  25. Kar, K., Cheng, W., and Ishii, K., “Effects of Ethanol Content on Gasohol PFI Engine Wide-Open-Throttle Operation,” SAE Int. J. Fuels Lubr.| Vol2 | Issue 1:895-901, 2009, https://doi.org/10.4271/2009-01-1907.

    Article  Google Scholar 

  26. Nakata, K., Utsumi, S., Ota, A., Kawatake, K. et al., “The Effect of Ethanol Fuel on a Spark Ignition Engine,” SAE Technical Paper 2006-01-3380, 2006, https://doi.org/10.4271/2006-01-3380.

  27. Thewes, M., Muther, M., Brassat, A., Pischinger, S. et al., “Analysis of the Effect of Bio-Fuels on the Combustion in a Downsized DI SI Engine,” SAE Int. J. Fuels Lubr. 5(1):274-288, 2012, https://doi.org/10.4271/2011-01-1991.

    Article  Google Scholar 

  28. Jandl, S., Pertl, P., Schacht, H., Schmidt, S. et al., “Thermodynamic Loss Analysis of a High Power Motorcycle Engine with Focus on Alcohol Blended Fuels,” SAE Technical Paper 2017-32-0070, 2017.

    Google Scholar 

  29. Jung, H., Shelby, M., Newman, C. and Stein, R., “Effect of Ethanol on Part Load Thermal Efficiency and CO2 Emissions of SI Engines,” SAE Int. J. Engines 6(1):2013, https://doi.org/10.4271/2013-01-1634.

    Article  Google Scholar 

  30. RICHTLINIE 97/24/EG DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 17. Juni 1997 über bestimmte Bauteile und Merkmale von zweirädrigen oder dreirädrigen Kraftfahrzeugen [31] RICHTLINIE 2002/51/EG DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 19. Juli 2002 zur Verminderung der Schadstoffemissionen von zweirädrigen und dreirädrigen Kraftfahrzeugen und zur Änderung der Richtlinie 97/24/EG

    Google Scholar 

  31. RICHTLINIE 2006/72/EG DER KOMMISSION vom 18. August 2006 zur Änderung der Richtlinie 97/24/EG des Europäischen Parlaments und des Rates über bestimmte Bauteile und Merkmale von zweirädrigen oder dreirädrigen Kraftfahrzeugen zwecks Anpassung an den technischen Fortschritt

    Google Scholar 

  32. VERORDNUNG (EU) Nr. 168/2013 DES EUROPÄISCHEN PARLAMENTS UND DES RATES vom 15. Januar 2013 über die Genehmigung und Marktüberwachung von zwei- oder dreirädrigen und vierrädrigen Fahrzeugen

    Google Scholar 

  33. Geivanidis, S., Ntziachristos, L., Samaras, Z., Xanthopoulos, A., Steven, H., Bugsel, B., „Study on possible new measures concerning motorcycle emissions“, Final Report (2008), Report No: 08.RE.0019.V2

    Google Scholar 

  34. Bauer, K., Heilmann, G., Koepcke, G., Redrs, K., Erwig, W., Hunwartzen, I,. et al., „Final Report: Determination of knock resistance (RON and MON) of alcohols and alcohol blend fuels in CFR-engines,“ DGMK Forschungsbericht 260-01, 1980, German

    Google Scholar 

  35. Thermodynamics Research Center, NIST Boulder Laboratories, M. Frenkel director, “Thermodynamics Source Database” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/t4d303, (retrieved April 6, 2017)

  36. W.E. Acree, Jr., J.S. Chickos, “Phase Transition Enthalpy Measurements of Organic and Organometallic Compounds” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/t4d303, (retrieved April 6, 2017).

  37. H.Y. Afeefy, J.F. Liebman, and S.E. Stein, “Neutral Thermochemical Data” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, https://doi.org/10.18434/t4d303, (retrieved April 6, 2017).

  38. Yaws, C., “Handbook of Chemical Compound Data for Process Safety,” Gulf Publishing Company, Houston Texas, 1997, ISBN 0-88415-381-9

    Google Scholar 

  39. Mackay, D., Shiu, W. Y., Ma, K.-C., Lee, S. C., “Handbook of Physical-Chemical Properties and Environmental Fate for Organic Chemicals, Second Edition,” CRC Press, 2006, ISBN 978-1-56670-687-2

    Google Scholar 

  40. Jandl, S., Pertl, P., Schacht, H., Schmidt, S. et al., “Thermodynamic Loss Analysis of a High Power Motorcycle Engine with Focus on Alcohol Blended Fuels,” SAE Technical Paper 2017-32-0070, 2017

    Google Scholar 

  41. 41. Wallner, T., “Correlation Between Speciated Hydrocarbon Emissions and Flame Ionization Detector Response for Gasoline/Alcohol Blends” J. Eng. Gas Turbines Power 133(8), 2011, https://doi.org/10.1115/1.4002893

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jandl, S., Schmidt, S., Eichlseder, H. (2019). Einsatz alternativer Kraftstoffe im Powersportsegment am Beispiel eines MPFI-Motorradmotors. In: Tschöke, H., Marohn, R. (eds) 11. Tagung Einspritzung und Kraftstoffe 2018. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-23181-1_16

Download citation

Publish with us

Policies and ethics