Skip to main content

Hochenergiebatterien nach Lithium-Ion

  • Chapter
  • First Online:
Elektrochemische Speicher
  • 25k Accesses

Zusammenfassung

Wiederaufladbare Batterien mit spezifischen Energien jenseits der 200 Wh kg−1 und herausragenden Leistungsdichten sollen die heutige Lithiumionen-Technologie in den nächsten Jahrzehnten ablösen. Manche Forschungsansätze reichen in die Zeit der Ölkrise in den 1970er und 1980er Jahren zurück. Das Kapitel beschreibt visionäre Konzepte von Metallionen- und Metall-Luft-Batterien, bis hin zu Festkörpertechnologien und Anionen-Batterien. Vor- und Nachteile werden im Hinblick auf eine baldige Nutzung in Speichersystemen abgewogen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Lithium-Schwefel

  1. Agostini, M., Lee, D.-J., Scrosati, B., Sun, Y.K., Hassoun, J.: Characteristics of Li\({}_{\mathrm{2}}\)S\({}_{\mathrm{8}}\)-tetraglyme catholyte in a semi-liquid lithium-sulfur battery. J. Power Sources 265, 14–19 (2014)

    Google Scholar 

  2. Chen, L., Shaw, L.L.: Recent advances in lithium-sulfur batteries. J. Power Sources 267, 770–783 (2014)

    Google Scholar 

  3. Ding, N., Chien, S.W., Hor, T.S.A., Liu, Z., Zong, Y.: Key parameters in design of lithium sulfur batteries. J. Power Sources 269, 111–116 (2014)

    Google Scholar 

  4. Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010)

    Google Scholar 

  5. Hoss, R., Vögtle, F.: Templatsynthesen. Angew. Chem. 106(4), 389 (1994)

    Google Scholar 

  6. Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Saraf, L.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L., Liu, J.: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat. Commun. 5, 3015 (2014)

    Google Scholar 

  7. Kim, J., Lee, D.-J., Jung, H.-G., Sun, Y.-K., Hassoun, J., Scrosati, B.: An advanced lithium-sulfur battery. Adv. Funct. Mat. 23, 1076–1080 (2013)

    Google Scholar 

  8. Lin, Z., Liu, Z., Fu, W., Dudney, N.J., Liang, C.: Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52, 7460–7463 (2013)

    Google Scholar 

  9. Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013)

    Google Scholar 

  10. Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium-sulphur batteries. J. Power Sources 255, 204–218 (2014)

    Google Scholar 

  11. Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.C., Cui, Y.: Sulphur–TiO\({}_{\mathrm{2}}\) yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013)

    Google Scholar 

  12. Terada, S., Nozawa, R., Ikeda, K., Mandaia, T., Ueno, K., et al.: Room temperature sodium-sulfur batteries with glyme-Na salt solvate ionic liquid electrolytes. ECS Meeting Abstract. http://ma.ecsdl.org/content/MA2014-04/2/248.short, geprüft: November 2015

Lithium-Luft

  1. Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996)

    Google Scholar 

  2. Aurbach, D., Daroux, M., Faguy, P., Yeager, E.: The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991)

    Google Scholar 

  3. McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C.: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2(10), 1161–1166 (2011)

    Google Scholar 

  4. Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B.: An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012)

    Google Scholar 

  5. Li, F., Kitaura, H., Zhou, H.: The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 6, 2302–2311 (2013)

    Google Scholar 

  6. Lu, Y.C., Xu, Z., Gasteiger, H.A., Chen, S., et al.: Platinum-gold nanoparticles: a highly active functional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010)

    Google Scholar 

  7. Kowalczk, I., Read, J., Salomon, M.: Li-air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem. 79, 851–860 (2007)

    Google Scholar 

  8. Littauer, E.L., Tsai, K.C.: Anodic behavior of lithium in aqueous electrolytes. J. Electrochem. Soc. 123, 771–776 (1976)

    Google Scholar 

  9. Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G.: Rechargeable Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006)

    Google Scholar 

  10. Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G.: A reversible and higher-rate Li-O\({}_{\mathrm{2}}\) battery. Science 337, 563–566 (2012)

    Google Scholar 

  11. (a) Visco, S.J., Nimon, E., De Jonghe, L.C. In: Garche, J. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 376. Elsevier, Amsterdam (2009) (b) US 7645543 (2010), US 7282295 (2007), US 7282296 (2007), US 7824806 (2010), US 20130045428

    Google Scholar 

  12. Visco, S.J., Nimon, V.Y., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Volfkovich, Y.M., Bograchev, D.A.: Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014)

    Google Scholar 

  13. Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D.: A rechargeable Li–O\({}_{\mathrm{2}}\) battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013)

    Google Scholar 

  14. Wang, J., Li, Y., Sun, X.: Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2, 443–467 (2013)

    Google Scholar 

  15. Wang, Y., He, P., Zhou, H.: A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011)

    Google Scholar 

  16. (a) Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J., Chen, L.Q.: New electrolytes using Li\({}_{\mathrm{2}}\)O or Li\({}_{\mathrm{2}}\)O\({}_{\mathrm{2}}\) oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008) (b) Li, L.F., Xie, B., Lee, H.S., Li, H., Yang, X.-Q., McBreen, J., Huang, X.J.: Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries. J. Power Sources 189, 539–542 (2009) (c) Shanmukaraj, D., Grugeon, S., Gachot, G., Laruelle, S., Mathiron, D., Tarascon, J.M., Armand, M.: Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010)

    Google Scholar 

  17. Zhang, D., Li, R., Huang, T., Yu, A.: Novel composite polymer electrolyte for lithium air batteries. J. Power Sources 195, 1202–1206 (2010)

    Google Scholar 

  18. Zheng, J.P., Liang, R.Y., Hendrickson, M., Plichta, E.J.: Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 155, A432–A437 (2008)

    Google Scholar 

Natriumion und Natrium-Luft

  1. Barpanda, P., Oyama, G., Nishimura, S., Chung, S.-C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014)

    Google Scholar 

  2. Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2–Na\({}_{x}\)CoO\({}_{\mathrm{2}}\) phase diagram. Nat. Mater. 10, 74–80 (2011)

    Google Scholar 

  3. Brandt, K.: Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994)

    Google Scholar 

  4. Chen, S., Bi, J., Zhao, Y., Yang, L., Zhang, C., et al.: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012)

    Google Scholar 

  5. Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011)

    Google Scholar 

  6. Datta, D., Li, J., Shenoy, V.B.: Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014)

    Google Scholar 

  7. Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013)

    Google Scholar 

  8. Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Current opinion in solid state and materials. Science 16, 168–177 (2012)

    Google Scholar 

  9. Goodenough, J.B., Hong, H.Y.P., Kafalas, J.A.: Fast Na\({}^{\mathrm{+}}\)-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976)

    Google Scholar 

  10. Hartmann, P., Bender, C.L., Vracar, M., Dürr, A.K., Garsuch, A., Janek, J., Adelhelm, P.: A rechargeable room-temperature sodium superoxide (NaO\({}_{\mathrm{2}})\) battery. Nat. Mater. 12, 228–232 (2013)

    Google Scholar 

  11. Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014)

    Google Scholar 

  12. Janek, J., Adelhelm, P.: Zukunftstechnologien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 16, S. 199–217. Springer, Berlin (2013)

    Google Scholar 

  13. Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K.: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011)

    Google Scholar 

  14. Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H., Rojo, T.: Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 6, 2312–2337 (2013)

    Google Scholar 

  15. Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835 (2011)

    Google Scholar 

  16. Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012)

    Google Scholar 

  17. Wenzel, S., Hara, T., Janek, J., Adelhelm, P.: Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011)

    Google Scholar 

  18. Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., Inazawa, S.: Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide-potassium bis(fluorosulfonyl)amide. J. Power Sources 217, 479–484 (2012)

    Google Scholar 

Festkörperbatterien

  1. Buschmann, H., Berendts, S., Mogwitz, B., Janek, J.: Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors Li\({}_{\mathrm{7}}\)La\({}_{\mathrm{3}}\)Zr\({}_{\mathrm{2}}\)O\({}_{\mathrm{12}}\) and Li\({}_{7-x}\)La\({}_{\mathrm{3}}\)Zr\({}_{2-x}\)Ta\({}_{x}\)O\({}_{\mathrm{12}}\) with garnet-type structure. J. Power Sources 206, 236–244 (2012)

    Google Scholar 

  2. Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010)

    Google Scholar 

  3. Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009)

    Google Scholar 

  4. Hartmann, P., Leichtweiss, Th., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, Ph., Janek, J.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013)

    Google Scholar 

  5. Ma, Ch., Rangasamy, E., Liang, Ch., Sakamoto, J., More, K.L., Chi, M.: Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li\({}^{\mathrm{+}}\)/H\({}^{\mathrm{+}}\) exchange in aqueous solutions. Angew. Chem. 127(1), 131–135 (2015)

    Google Scholar 

  6. Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011)

    Google Scholar 

  7. Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li\({}_{{7-X}}\) La\({}_{\mathrm{3}}\)(Zr\({}_{{2-X}}\), NbX)O\({}_{\mathrm{12}}\) (X \(=\) 0–2). J. Power Sources 196, 3342–3345 (2011)

    Google Scholar 

  8. Ohta, S., Komagata, S., Seki, J., Saeki, T., Morishita, Sh., Asaoka, T.: All-solid-state lithium ion battery using garnet-type oxide and Li\({}_{\mathrm{3}}\)BO\({}_{\mathrm{3}}\) solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53 (2013)

    Google Scholar 

  9. Wang, L., Goodenough, J.B.: DOE Vehicle Technologies Annual Merit Review Meeting, May 14–18 (2012)

    Google Scholar 

  10. Jones, K.S.: Ceramic Leadership Summit. American Ceramic Society, Baltimore, Aug 1–3, 2011

    Google Scholar 

Metall-Luft und Metalllion

  1. Arai, H.: Metal storage/metal air (Zn, Fe, Al, Mg). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 18, S. 337–344. Elsevier, Amsterdam (2015)

    Google Scholar 

  2. Arthur, T.S., Singh, N., Matsui, M.: Electrodeposited Bi, Sb and B\({}_{\mathrm{i}1-x}\)Sb\({}_{x}\) alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012)

    Google Scholar 

  3. Aurbach, D., Weissman, I., Gofer, Y., Levi, E.: Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003)

    Google Scholar 

  4. Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000)

    Google Scholar 

  5. (a) Doe, R.E., Han, R., Hwang, J., Gmitter, A., Shterenberg, I., Yoo, H.D., et al.: Novel electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014) (b) WO/2013/096827A1 (2013), US 20130252112 (2013), US 20130252114 (2013)

    Google Scholar 

  6. Gofer, Y., Chusid, O., Aurbach, D., Gan, R.: Magnesium batteries. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 285–301. Elsevier, Amsterdam (2009)

    Google Scholar 

  7. Jörissen, L.: Secondary batteries, metal-air systems: bifunctional oxygen electrodes. In: Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 356. Elsevier, Amsterdam (2009)

    Google Scholar 

  8. Kakibe, T., Hishii, J., Yoshimoto, N., Egashira, M., Morita, M.: Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries. J. Power Sources 203, 195–200 (2012)

    Google Scholar 

  9. Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., et al.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011)

    Google Scholar 

  10. Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010)

    Google Scholar 

  11. Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., et al.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012)

    Google Scholar 

  12. Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014)

    Google Scholar 

  13. Singh, N., Arthur, T.S., Ling, C., Matsui, M., Mizuno, F.: A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013)

    Google Scholar 

  14. Wang, W., Jiang, B., Xiong, W., Sun, H., Lin, Z., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3(3383) (2013)

    Google Scholar 

  15. (a) Yu, X., Licht, S.: Advances in Fe(VI) charge storage, Part I. Primary alkaline super-iron batteries. J. Power Sources 171, 966–980 (2007) b) Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources 171(2), 1010–1022 (2007)

    Google Scholar 

  16. Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: \(\upalpha\)-MnO\({}_{\mathrm{2}}\) as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012)

    Google Scholar 

Halogenid- und Anionenbatterien

  1. Placke, T., Fromm, O., Lux, S.F., Bieker, P., Rothermel, S., Meyer, H.W., Passerini, S., Winter, M.: Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159(11), A1755–A1765 (2012)

    Google Scholar 

  2. Reddy, A., Fichtner, M.: Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059–17062 (2011)

    Google Scholar 

  3. Zhao, X., Ren, Sh., Bruns, M., Fichtner, M.: Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014)

    Google Scholar 

Phasenumwandlungsmaterialien

  1. Amatucci, G.G., Pereira, N.: Fluoride based electrode materials for advanced energy storage devices. J. Fluorine Chem. 128, 243–262 (2007)

    Google Scholar 

  2. Bruce, P.G., Scrosati, B., Tarascon, J.-M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Google Scholar 

  3. Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010)

    Google Scholar 

  4. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurzweil, P. (2018). Hochenergiebatterien nach Lithium-Ion. In: Elektrochemische Speicher. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-21829-4_5

Download citation

Publish with us

Policies and ethics