Skip to main content

Fault-tolerant components for automatic driving automobiles – some basic structures and examples

  • Conference paper
  • First Online:
Fahrerassistenzsysteme 2016

Part of the book series: Proceedings ((PROCEE))

Zusammenfassung

Partially and highly automated driving automobiles are characterized by automatic controlled longitudinal and lateral movement and at least a reduced, permanent acting driver. This requires an increased supervision of all active systems and a fault-tolerant design of the safety-relevant components of the chassis and the powertrain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. IEC 26262, “Functional safety standard for automotive electrical/electronic systems“, International Standard Organisation 2011.

    Google Scholar 

  2. IEC 61508, “Standard draft IEC 61508, Part 1-7”, Functional Safety of E/ E/ PES: (complex) Electrical/ (complex) Electronic/ Programmable Electronic Systems. Version 4.0, 1997.

    Google Scholar 

  3. N. Storey, “Safety-critical computer systems”, Essex, UK: Addison Wesley Longman Ltd., 1996.

    Google Scholar 

  4. R. Isermann, “Fault-diagnosis systems”, Heidelberg: Springer, 2006.

    Google Scholar 

  5. R. Isermann, R. Schwarz, S. Stölzl, “Fault-tolerant drive-by-wire systems – concepts and realizations“, IEEE Control Systems Magazine, vol. 22, no. 5, pp. 64-81.

    Google Scholar 

  6. N. Leveson, “Safeware. System safety and computer”, Reading, MA, USA: Addison-Wesley Publishing Company, 1995.

    Google Scholar 

  7. W.-D. Jonner, H. Winner, L. Dreilich and E. Schunck, “Electrohydraulic brake system – the first approach to brake-by-wire technology” SAE Technical Paper Series, no. 960991. In [4], pp. 221-228.

    Google Scholar 

  8. H. E. Rauch, “Autonomous control reconfiguration”, IEEE Control Systems Magazine, vol. 15, no. 6, pp. 37-48, 1995.

    Google Scholar 

  9. P. R. Chandler, “Reconfigurable flight control at Wright laboratory”, Neuilly-sur-Seine, France, vol. III, AGARD advisory report 360, Aerospace 2020, 1997.

    Google Scholar 

  10. R. J. Patton, “Fault-tolerant control: the 1997 situation”, in IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), Kingston Upon Hull, UK, vol. 2, pp. 1033-1055, 1997.

    Google Scholar 

  11. J. Chen, R. J. Patton and Z. Chen, “Active fault-tolerant flight control systems design using the linear matrix inequality method”, in Transactions Institute of Measurement and Control, vol. 21, no. 2/3, pp. 77-84, 1999.

    Google Scholar 

  12. S. Suryanaryanan and M. Tomizuka, “Fault-tolerant lateral control of automated vehicles based on simultaneous stabilization”, in 1st IFAC Conference on Mechatronic Systems, Darmstadt, Germany: 2000.

    Google Scholar 

  13. R. Isermann, “Fault-diagnosis applications”, Heidelberg: Springer, 2011.

    Google Scholar 

  14. J. J. Gertler, “Fault detection and diagnosis on engineering systems”, New York, NY, USA,:Marcel Dekker, 1999.

    Google Scholar 

  15. J. Chen and R. J. Patton, “Robust model-based fault diagnosis for dynamic systems”, Boston, MA, USA: Kluwer Academic Publishers, 1999.

    Google Scholar 

  16. M. P. Henry and D. W. Clarke, “The self-validating sensor: rationale, definitions, and examples”, in Control Engineering Practice, vol. 1, no. 2, pp. 585-610, 1993.

    Google Scholar 

  17. T. Pfeufer, “Model-based fault detection and diagnosis for an automotive actuator”, (in German), Fortschr.-Ber. VDI Reihe 8 No. 764. Düsseldorf, Germany: VDI-Verlag, 1999.

    Google Scholar 

  18. A. T. van Zanten, R. Erhardt, K. Landesfeind and G. Pfaff, “VDC systems development and perspective”, SAE Technical Paper Series, no. 980235. In [4], pp. 373-394.

    Google Scholar 

  19. S. Quass and P. Schiebel, “Aspects of future steering markets and their relevance to steering sensors”, Proceedings of IQPC – Advanced Steering Systems, 2nd Annual Conference, May 21-23, Frankfurt, 2007.

    Google Scholar 

  20. M. Münchhof, M. Beck, R. Isermann, “Fault-tolerant actuators and drives – structures, fault-detection principles and applications”, Annual Reviews in Control, vol. 33, pp. 136-148, 2009.

    Google Scholar 

  21. R. Oehler, A. Schoenhoff and M. Schreiber, “Online model-based fault detection and diagnosis for a smart aircraft actuator” in IFAC Symposium on Fault Detection, Super-vision and Safety for Technical Processes (SAFEPROCESS), Kingston upon Hull, UK, vol. 2, pp. 591-596, 1997.

    Google Scholar 

  22. A. Krautstrunk and P. Mutschler, “Remedial strategy for a permanent magnet synchronous motor drive”, Proceedings of EPE´99, Lausanne, Switzerland, 1999.

    Google Scholar 

  23. O. Moseler, T. Heller, R. Isermann, “Model-based fault detection for an actuator driven by a brushless DC motor”, Proceedings of the 14th IFAC World Congress, Beijing, China, vol. P, pp. 193-198, 1999.

    Google Scholar 

  24. O. Moseler, “Mikrocontrollerbasierte Fehlererkennung für mechatronische Komponenten am Beispiel eines elektromechanischen Stellantriebs”, Fortschr.-Ber. VDI Reihe 8, 980. VDI Verlag: Düsseldorf, 2001.

    Google Scholar 

  25. Robert Bosch GmbH (ed.), “Automotive Handbook”, 8th edition. Cambridge: Bentley publishers, 2011.

    Google Scholar 

  26. R. Kress, “Robuste Fehlerdiagnoseverfahren zur Wartung und Serienabhnahme elektrohydraulische Aktuatoren”, Doctoral thesis. Technische Universität Darmstadt, Fachbereich Maschinenbau, 2002.

    Google Scholar 

  27. M. Münchhof, “Model-based fault detection for a hydraulic servo axis”, Dissertation Technische Universität Darmstadt. Fortschr.-Ber. VDI Reihe 8, 1105. Düssedorf: VDI Verlag, 2006.

    Google Scholar 

  28. Moog Aircraft Group, “Redundant Electrohydrostatic Actuation System - Application: F/A-18 C/D Horizontal Stabilizer”, 1996.

    Google Scholar 

  29. T. Sadeghi and A. Lyons, “Fault tolerant EHA architectures”, IEEE Aerospace and Electronic Systems Magazine, 7(3): pp. 32–42, 1992.

    Google Scholar 

  30. S. Green, D.J. Atkinson, B.C. Mecrow, A.G. Jack and B. Green, “Fault tolerant, variable frequency, unity power factor converters for safety critical PM drives”, IEE Proceedings – Electric Power Applications, 150(6): pp. 663–672, 2003.

    Google Scholar 

  31. A. Krautstrunk, “Fehlertolerantes Aktorkonzept für sicherheitsrelevante Anwendungen”, Aachen, Germany: Shaker Verlag, 2005.

    Google Scholar 

  32. E. Levi, “Multiphase electric machines for variable-speed applications”, IEEE Transactions on Industrial Electronics, 55(5): pp. 1893–1909, 2008.

    Google Scholar 

  33. G.J. Atkinson, B.C. Mecrow, A.G. Jack, D.J. Atkinson, P. Sangha, and M. Benarous, “The design of fault tolerant machines for aerospace applications”, Proc. IEEE International Conference on Electric Machines and Drives, pp. 1863-1869, 2005.

    Google Scholar 

  34. N. Bianchi, S. Bolognani and M.D. Pre, “Impact of stator winding of a five-phase permanent-magnet motor on postfault operations”, IEEE Transactions on Industrial Electronics, vol. 55, no. 5, pp. 1978-1987, 2008.

    Google Scholar 

  35. J. Reuss and R. Isermann, “Umschaltstrategien eines redundaten Asynchronmotoren-Antriebssystems”, SPS/IPC/DRIVES 2004: Elektrische Automatisierung, Systeme und Komponenten: Fachmesse and Kongress, Nürnberg, Germany, pp. 469-477, 2004.

    Google Scholar 

  36. R. Reichel, “Steuersysteme im Flugzeug, fly-by-wire”, Automatisierungstechnik, 52(12): pp. 588-595, 2004.

    Google Scholar 

  37. M. Beck and R. Isermann, “Modelling of a duplex electrical power steering prototype”, IQPC Conference on Steering Systems, Wiesbaden, Germany, November 2010.

    Google Scholar 

  38. P. Kessler, “Model-based fault diagnosis of an EPS system”, IQPC Conference on Steering Systems, Düsseldorf, Germany, 23-24 November 2015.

    Google Scholar 

  39. R. Isermann and M. Beck, “Modellbasierte Methoden zur Erhöhung der Verfügbarkeit und Sicherheit von Fahrwerkomponenten”, VDI/VDE-Tagung AUTOREG, Baden-Baden, Germany, 2011.

    Google Scholar 

  40. F. Schöttler, “Functional safety in electrical power steering systems”, IQPC Conference on Steering Systems, Frankfurt, Germany, 11-14 November 2013.

    Google Scholar 

  41. J. Hayashi, “Road map of the motor for an electric power steering system”, 4. ATZ-Konferenz chassis. tech plus, München, Germany, 2013.

    Google Scholar 

  42. S. Yoneki, E. Hirozumi and B. Collerais, “Fail-operational EPS by distributed architecture”, 5. ATZ-Konferenz chassis. tech plus, pp. 421-442, München, Germany, 2014.

    Google Scholar 

  43. H.D. Heitzer, “Development of a fault-tolerant steer-by-wire system”, Auto Technology, vol. 4, pp. 56-60, 2003.

    Google Scholar 

  44. M. Hell, “Steer-by-wire: from concepts to reality”, IQPC Conference on Steering Systems, Düsseldorf, Germany, 23-24 November 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rolf Isermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Isermann, R. (2018). Fault-tolerant components for automatic driving automobiles – some basic structures and examples. In: Isermann, R. (eds) Fahrerassistenzsysteme 2016. Proceedings. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-21444-9_14

Download citation

Publish with us

Policies and ethics