Skip to main content

Pasta – weiche Materie zwischen Gummi und Glas

  • Chapter
  • First Online:

Zusammenfassung

Beim Genuss von Pasta lässt sich, ganz abgesehen vom Geschmack der Sauce, eine ganze Reihe fundamentaler Prinzipen der Physik weich kondensierter Materie erforschen, etwa die Elastizität gekochter Pasta oder die Sprödigkeit getrockneter Nudeln. Entscheidend für diese Phänomene ist letztlich die Beweglichkeit der Moleküle. Selbst der Pastateig ist eine Wissenschaft für sich: Aus Mehl und Wasser entsteht ein elastischer Teig, der sich mit hohen Kräften und ohne Schaden zu nehmen durch Düsen drücken lässt, damit daraus Spaghetti werden. Die Pasta wird zu einem spröden „Glas“ getrocknet, um nach dem Kochen wiederum zu elastischen, weichen, genussreichen Nudeln zu werden. Den molekularen Ursachen dieser Materialtransformationen wird im Folgenden systematisch auf den Grund gegangen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aguilera, J. M., Cadoche, L., López, C., & Gutierrez, G. (2001). Microstructural changes of potato cells and starch granules heated in oil. Food Research International, 34(10), 939–947.

    Article  Google Scholar 

  • Banasik, O. J. (1981). Pasta processing. Durum wheat. Cereal Foods World.

    Google Scholar 

  • Belton, P. S. (1999). Mini review: on the elasticity of wheat gluten. Journal of Cereal Science, 29(2), 103–107.

    Article  Google Scholar 

  • Bucci, M. (2016). Protein folding: Minimizing frustration. Nature chemical biology, 13(1), 1.

    Article  Google Scholar 

  • Chaikin, P. M., & Lubensky, T. C. (1995). Principles of condensed matter physics (Vol. 1). Cambridge: Cambridge University Press.

    Google Scholar 

  • Cross, R. (2012). Elastic and viscous properties of Silly Putty. American Journal of Physics, 80(10), 870–875.

    Article  Google Scholar 

  • Debenedetti, P. G., & Stillinger, F. H. (2001). Supercooled liquids and the glass transition. Nature, 410(6825), 259.

    Article  Google Scholar 

  • De Gennes, P. G., & Gennes, P. G. (1979). Scaling concepts in polymer physics. Cornell University Press.

    Google Scholar 

  • Doi, M., & Edwards, S. F. (1986). The theory of polymer dynamics. Oxford University Press.

    Google Scholar 

  • Hirschfelder, G. (2013). Pelmeni, Pizza, Pirogge. Russische Küche und kulturelle Identität, 31.

    Google Scholar 

  • Gasser, M. (2014). Spaziergang durch Italiens Küchen. Edition diá.

    Google Scholar 

  • Kokawa, M., Sugiyama, J., Tsuta, M., Yoshimura, M., Fujita, K., Shibata, M., Araki, T., & Nabetani, H. (2013). Development of a quantitative visualization technique for gluten in dough using fluorescence fingerprint imaging. Food and Bioprocess Technology, 6(11), 3113–3123.

    Article  Google Scholar 

  • Martinez, C. S., Ribotta, P. D., Leon, A. E., & Anon, M. C. (2007). Physical, sensory and chemical evaluation of cooked spaghetti. Journal of Texture Studies, 38(6), 666–683.

    Article  Google Scholar 

  • Murphy, K. P. (Ed.). (2001). Protein structure, stability, and folding (Vol. 168). Springer Science & Business Media.

    Google Scholar 

  • Pereboom, D. (1995). Determinism al dente. Noûs, 29(1), 21–45.

    Article  Google Scholar 

  • Peter, P. (2006). Kulturgeschichte der italienischen Küche. München: C.H. Beck.

    Google Scholar 

  • Roos, Y. H. (2017). Implication of Glass Transition to Drying and Stability of Dried Foods. Glass Transition and Phase Transitions in Food and Biological Materials, 225.

    Google Scholar 

  • Russ, N., Zielbauer, B. I., Ghebremedhin, M., & Vilgis, T. A. (2016). Pre-gelatinized tapioca starch and its mixtures with xanthan gum and ι-carrageenan. Food Hydrocolloids, 56, 180–188.

    Article  Google Scholar 

  • Schiedt, B., Vilgis, T. (2013): Teig, Trieb, Textur – Proteine unter Stress,.Journal Culinaire, 15, 47–62

    Google Scholar 

  • Schiedt, B., Baumann, A., Conde‐Petit, B., & Vilgis, T. A. (2013). Short‐and Long‐Range Interactions Governing the Viscoelastic Properties during Wheat Dough and Model Dough Development. Journal of Texture Studies, 44(4), 317–332.

    Article  Google Scholar 

  • Shirley, B. A. (Ed.). (1995). Protein Stability and Folding: Theory and Practice. Methods in Molecular Biology.

    Google Scholar 

  • Singh, H., & MacRitchie, F. (2001). Application of polymer science to properties of gluten. Journal of Cereal Science, 33(3), 231-243.

    Article  Google Scholar 

  • Vermeylen, R., Derycke, V., Delcour, J. A., Goderis, B., Reynaers, H., & Koch, M. H. (2006). Gelatinization of starch in excess water: Beyond the melting of lamellar crystallites. A combined wide- and small-angle X-ray scattering study. Biomacromolecules, 7(9), 2624–2630.

    Article  Google Scholar 

  • Vilgis, T. (2006). Wenn Nudeln fingerhakeln. Physik in unserer Zeit, 37(4), 198.

    Article  Google Scholar 

  • Vilgis, T. A., Heinrich, G., & Klüppel, M. (2009). Reinforcement of polymer nano-composites: theory, experiments and applications. Cambridge University Press.

    Google Scholar 

  • Vilgis, T. A. (2010). Das Molekül-Menü – molekulares Wissen für kreative Köche. Stuttgart: S. Hirzel

    Google Scholar 

  • Vilgis, T. A. (2015a). Al dente – die Physikerdefinition. Physik in unserer Zeit, 46(1), 50.

    Article  Google Scholar 

  • Vilgis, T. A. (2015b). Soft matter food physics – the physics of food and cooking. Reports on Progress in Physics, 78(12), 124602.

    Article  Google Scholar 

  • Vilgis, T. A. (2015c). Verdicken: Speichelfluss und Schluckbeschwerden. In T. Vilgis, I. Lendner, & R. Caviezel (Hrsg.), Ernährung bei Pflegebedürftigkeit und Demenz (S. 151–176). Wien: Springer.

    Google Scholar 

  • Visschers, R. W., & de Jongh, H. H. (2005). Disulphide bond formation in food protein aggregation and gelation. Biotechnology advances, 23(1), 75–80.

    Article  Google Scholar 

  • Wormer, E. J. (2017). Der Mensch is(s)t Nudelsuppe. Orthopädie & Rheuma, 20(3), 56–57.

    Article  Google Scholar 

  • Zhang, B., Dhital, S., Flanagan, B. M., & Gidley, M. J. (2014). Mechanism for starch granule ghost formation deduced from structural and enzyme digestion properties. Journal of agricultural and food chemistry, 62(3), 760–771.

    Article  Google Scholar 

  • Zielbauer, B. I., Schönmehl, N., Chatti, N., & Vilgis, T. A. (2016). Networks: From Rubbers to Food. In K. W. Stöckelhuber, A. Das, & M. Klüppel (Hrsg.), Designing of Elastomer Nanocomposites: From Theory to Applications (pp. 187–233). Cham: Springer.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Vilgis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vilgis, T.A. (2018). Pasta – weiche Materie zwischen Gummi und Glas. In: Ghadiri, A., Vilgis, T., Bosbach, T. (eds) Wissen schmeckt. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-21390-9_1

Download citation

Publish with us

Policies and ethics