Skip to main content
  • 487 Accesses

Abstract

Understanding the microstructural features of polycrystalline materials such as high-performance ceramics (HPCs) is a prerequisite for the design of materials with desired superior properties, such as high toughness or strength. On the length scale of a few microns to a few hundreds of microns, many materials such as glass, concrete or ceramics exhibit a polyhedral granular structure which is known to crucially influence their macroscopic mechanical properties. With ceramics, the specific shape and size of these polycrystalline grain structures is formed during a sintering process where atomic diffusion plays a dominant role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Oliver Steinhauser .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Steinhauser, M.O. (2018). Shock wave failure in granular materials. In: Multiscale Modeling and Simulation of Shock Wave-Induced Failure in Materials Science. Springer Spektrum, Wiesbaden. https://doi.org/10.1007/978-3-658-21134-9_4

Download citation

Publish with us

Policies and ethics