Skip to main content

Real-time Event Processing for Smart Logistics Networks

  • Chapter
  • First Online:
Mobilität und digitale Transformation

Zusammenfassung

In times of aggravating competition in the logistics industry, organizations need to distinguish themselves and enhance their logistics performance. Responsiveness to critical situations and deviations from plan serves exactly this goal as it may lead to measurable improvements in business performance. However, meaningful data needed to exploit and enhance this capability may reside in several widespread sources. Identifying and utilizing such sources can be pivotal on an organization’s path to survival and success on the market. Using smarter approaches to logistics is such a path. Cyber-physical systems and complex event processing may be adequate technological means to aspire for the transition towards smart logistics systems and processes.

Our contribution introduces enhanced techniques to engineer event-driven CPS with the ePoEM model. This allows to identify value-adding sensors, respective measurement and data models, and rules of event detection and reaction. A case study covering picking and distribution processes in a typical consigner company demonstrates how to add value with event processing and move towards smart logistics networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • [1] M. Treiber and A. Kesting, Verkehrsdynamik und -simulation (Daten, Modelle und Anwendungen der Verkehrsflussdynamik), Berlin Heidelberg: Springer-Verlag Berlin Heidelberg, 2010.

    Google Scholar 

  • [2] N. G.F., “A simplified car-following theory: a lower order model.,” Institute of Transportation Studies, University of California, Berkeley, 2002.

    Google Scholar 

  • [3] W. Jin, Traffic Flow Models and their Numerical Soluations. PhD, California: University of California, 2000.

    Google Scholar 

  • [4] P. D. H. R. Schwarz and. P. D. N. Köckler, Numerische Mathematik, Wiesbaden: Vieweg+Teubner Verlag, 2011.

    Google Scholar 

  • [5] M. Treiber, A. Hennecke and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” 2000.

    Google Scholar 

  • [6] Ministerium für Bauen, Wohnen, Stadtentwicklung und Verkehr, “https://www.verkehr.nrw/,” 20 07 2017. [Online]. Available: https://www.verkehr.nrw/.

  • [7] M. S. K. Nagel, “A cellular automaton model for freeway traffic,” in J. Phys. I France, 1992.

    Google Scholar 

  • [8] PREMIUM, “Plug-In, Range-Extender, und Elektrofahrzeuge unter realen Mobilitätsumständen: Infrastruktur, Umweltbedingungen und Marktakzeptanz,” http://www.premium.uni-passau.de/das-projekt/, 2017.

  • [9] RUHRAUTOe, “RUHRAUTOe,” http://www.ruhrauto-e.de/, 2017.

  • [10] colognE-mobil, “colognE-mobil - Elektromobilitätslösungen für NRW,” http://colognemobil.de/, 2017.

  • [11] K. Reif, Kraftfahrzeug-Hybridantriebe, Vieweg+Teubner Verlag, 2012.

    Google Scholar 

  • [12] UN/ECE, “Regelung Nr. 101 der Wirtschaftskommision der Vereinten Nationen für Europa,” 2012.

    Google Scholar 

  • [13] M. Koppers and P. Driesch, “Simulationsgestützte Analyse verschiedener (teil-) elektrifizierter Antriebsvarianten für Pkw unter realen Betriebsbedingungen,” in Beiträge der 8. GMM-Fachtagung, Dortmund, VDA-Verlag, 2017, pp. 159-164.

    Google Scholar 

  • [14] C. Bishop, Pattern Recognition and Machine Learning, New York: Springer-Verlag, 2006.

    Google Scholar 

  • [15] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltzmann machines,” in Proceedings of the 27th International Conference on Machine Learning, Haifa, 2010.

    Google Scholar 

  • [16] T. Hastie, R. Tibshirani and J. Friedman, The Elements of Statistical Learning, New York: Springer-Verlag, 2009.

    Google Scholar 

  • [17] E. A. Lee, “CPS foundations,” in DAC, 2010 47th ACM IEEE, 2010.

    Google Scholar 

  • [18] D. Uckelmann, “A Definition Approach to Smart Logistics,” in Next Generation Teletraffic and Wired/Wireless Advanced Networking, Berlin/Heidelberg, Germany, 2008.

    Google Scholar 

  • [19] E. Fleisch, O. Christ and M. Dierkes, “Die betriebswirtschaftliche Vision des Internets der Dinge,” in Das Internet der Dinge. Ubiquitous Computing und RFID in der Praxis: Visionen, Technologien, Anwendungen, Handlungsanleitungen., Berlin, Germany, Springer, 2005, p. 3–37.

    Google Scholar 

  • [20] F. Straube, “Smarte Technologien in der Logistik,” [Online]. Available: http://www.bvl.de/wissen/logistik-bereiche/smarte-logistik.

  • [21] B. Scholz-Reiter, K. Windt and M. Freitag, “Autonomous logistic processes: new demands and first approaches,” in Digital enterprises, production networks, Budapest, Hungary, 2004.

    Google Scholar 

  • [22] B. Scholz-Reiter, M. Freitag and O. Herzog, “Selbststeuerung logistischer Prozesse – Ein Paradigmenwechsel und seine Grenzen,” Industrie Management, p. 23–27, 2004.

    Google Scholar 

  • [23] T. van Woensel, “Smart Logistics,” in Inaugural lecture, Eindhoven, The Netherlands, 2012.

    Google Scholar 

  • [24] E. Hofmann and M. Rüsch, “Industry 4.0 and the current status as well as future prospects on logistics,” Computers in Industry, p. 23–34, 2017.

    Google Scholar 

  • [25] W. Kersten, M. Seiter, B. v. See, N. Hackius, C. Rosentritt, C. Böhle, G. Reich, T. Maurer and R. Sauter, “Trends und Strategien in Supply Chain Management und Logistik – Chancen der digitalen Transformation,” in Den Wandel gestalten. Driving change., Hamburg, Germany, 2016.

    Google Scholar 

  • [26] C. Alias, Y. Kalkan, E. Koc and B. Noche, “Enabling Improved Process Control Opportunities by Means of Logistics Control Towers and Vision-Based Monitoring,” in ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1B: 34th Computers and Information in Engineering Conference., Buffalo (NY), USA, 2014.

    Google Scholar 

  • [27] C. Alias, V. Lederman Rawet, H. X. Ratton Neto and J. d. E. Neirão Reymão, “Investigating into the Prevalence of Complex Event Processing and Predictive Analytics in the Transportation and Logistics Sector: Initial Findings from Scientific Literature,” in Proceedings of the 10th Mediterranean Conference on Information Systems 2016 (MCIS 2016), Paphos, Cyprus, 2016.

    Google Scholar 

  • [28] C. Alias, Ç. Özgür and B. Noche, “Monitoring production and logistics processes with the help of industrial image processing,” in Proceedings of the 27th Annual POMS Conference 2016, Orlando (FL), USA, 2016.

    Google Scholar 

  • [29] C. Alias, Ç. Özgür, Q. Yang and B. Noche, “A System of Multi-Sensor Fusion for Activity Monitoring of Industrial Trucks in Logistics Warehouses,” in ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1B: 35th Computers and Information in Engineering Conference., Boston (MA), USA, 2015.

    Google Scholar 

  • [30] Ç. Özgür, C. Alias and B. Noche, “Comparing sensor-based and camera-based approaches to recognizing the occupancy status of the load handling device of forklift trucks,” Logistics Journal, 2016.

    Google Scholar 

  • [31] P. Leitao, A. W. Colombo and S. Karnouskos, “Industrial automation based on cyberphysical systems technologies: Prototype implementations and challenges,” Computers in Industry, 2015.

    Google Scholar 

  • [32] C. Talcott, “Cyber-physical systems and events,” in Lecture Notes in Computer Science, 2008.

    Google Scholar 

  • [33] D. C. Luckham, “A Short History of Complex Event Processing Part 3: the formative years,” Business, pp. 2-7, 2008.

    Google Scholar 

  • [34] Research and Markets, “Complex Event Processing Market by Application,” Februar 2016. [Online]. Available: http://www.researchandmarkets.com/reports/3616997/complex-event-processing-market-by-application. [Accessed 7 April 2017].

  • [35] F. Saglietti, D. Fohrweiser, S. Winzinger and R. Lill, “Model-Based Design and Testing of Decisional Autonomy and Cooperation in Cyber-Physical Systems,” in SEAA, 2015.

    Google Scholar 

  • [36] M. Book, V. Gruhn and R. Striemer, Tamed Agility, Springer, 2016.

    Google Scholar 

  • [37] J. Ollesch, M. Hesenius and V. Gruhn, “Engineering Events in CPS - Experiences and Lessons Learned (in press),” in 3rd International Workshop on Software Engineering for Smart Cyber-Physical Systems (SEsCPS’17) in conjunction with ICSE 2017, Buenos Aires, 2017.

    Google Scholar 

  • [38] O. P. Patri, V. S. Sorathia, A. V. Panangadan and V. K. Prasanna, “The process-oriented event model (PoEM): a conceptual model for industrial events,” in Proceedings of the 8th ACM International Conference on Distributed Event-Based Systems, 2014.

    Google Scholar 

  • [39] M. Book, V. Gruhn and R. Striemer, Tamed Agility, Heidelberg: Springer, 2016.

    Google Scholar 

  • [40] C. Alias, C. Ozgur, M. Jawale and B. Noche, “Analyzing the potential of Future-Internetbased logistics control tower solutions in warehouses,” in Proceedings of 2014 IEEE International Conference on Service Operations and Logistics, and Informatics, Qingdao, China PR, 2014.

    Google Scholar 

  • [41] Google Inc., “Google Maps,” [Online]. Available: www.google.de/maps.

  • [42] C. Alias, M. Jawale, A. Goudz and B. Noche, “Applying Novel Future-Internet-Based Supply Chain Control Towers to the Transport and Logistics Domain,” in ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis. Volume 3: Engineering Systems; Heat Transfer and Thermal Engineering; Materials and Tribology; Mechatronics; Robotics, Copenhagen, Denmark, 2014.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ollesch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ollesch, J., Hesenius, M., Gruhn, V., Alias, C. (2018). Real-time Event Processing for Smart Logistics Networks. In: Proff, H., Fojcik, T. (eds) Mobilität und digitale Transformation. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-20779-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-20779-3_32

  • Published:

  • Publisher Name: Springer Gabler, Wiesbaden

  • Print ISBN: 978-3-658-20778-6

  • Online ISBN: 978-3-658-20779-3

  • eBook Packages: Business and Economics (German Language)

Publish with us

Policies and ethics