Skip to main content

Ventile

  • Chapter
  • First Online:
Handbuch Dampfturbinen
  • 8279 Accesses

Zusammenfassung

Ventile bilden mithin die wichtigsten Sicherheitseinrichtungen beim Betrieb von Dampfturbinen. Dieses Kapitel beschreibt Auslegung und Aufbau von Schnell-Schluss (SSV) und Regel-Ventilen (RV) für die Frischdampf-Versorgung von Dampfturbinen sowie interne Entnahme- bzw. Überström-Ventile. Erläuterungen zu den vielfältigen anderen Stellorganen, die für den Betrieb von Dampfturbinen relevant sind, sind in Kapitel 18 (Umleitstationen) zu finden. In Kapitel 21 (Regelung) sind Hinweise für regeltechnische Auswirkungen der Ventile für den Betrieb von Dampfturbinen gegeben.

Im vorliegenden Kapitel erfolgt zunächst eine kurze Einführung in die grundlegenden Berechnungen von Ventilen. Anschließend werden verschiedene Bauformen und Anwendungsfälle erklärt. Abschließend wird die Betriebsweise der Ventile dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Baehr, H.D.: Thermodynamik, 11. Aufl. Springer, Berlin – Heidelberg – New York (2002)

    Book  Google Scholar 

  2. Beitz, W., Küttner, K.-H.: Dubbel, Taschenbuch für den Maschinenbau. Springer, Berlin – Heidelberg – New York (2001)

    Google Scholar 

  3. Benedict, R.P., Carlucci, N.A., Swetz, S.D.: Flow losses in abrupt enlargements and contractions. J. Eng. Power 88(1), 73–81 (1966)

    Article  Google Scholar 

  4. Bianchini, C.; Micio, M.; Tarchi, L.; Cortese, C.; Imparato, E.; Tabucci, D.: Numerical Analysis of Pressure Losses in Diffusor and Tube Steam Partition Valves. In: Proceedings IGTI/ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Volume 5B: Oil and Gas Applications; Steam Turbines, GT2013-95527, San Antonio, Texas, USA, June 3–7, (2013).

    Google Scholar 

  5. Brüggemann, P.; Vinnemeier, P.; Balkowski, I.; Büscher, C.; Stapper, P.: A New emergency stop and control Valves Design – Part 1: Experimental Verification with scaled models. In: Proceedings IGTI/ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 1B: Microturbines, Turbochargers and Small Turbomachines, GT2014-25116, Düsseldorf, Germany, June 16–20, (2014).

    Google Scholar 

  6. Clari, M.; Polklas, T.; Joos, F.: Three-dimensional Flow Separations in the Diffusor of a Steam Turbine Control Valve. In: Proceedings IGTI/ASME Turbo Expo 2011, Volume 7: Turbomachinery, Parts A, B, and C, GT2011-45617, Vancouver, British Columbia, Canada, June 6–10, (2011), pp. 2327–2334.

    Google Scholar 

  7. Clari, M.: Untersuchung von instationären Strömungsablösungen in den Diffusoren von Regelventilen von Dampfturbinen. Dissertation, Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg, 2014.

    Google Scholar 

  8. Dallmann, U.: Topological Structures of Three Dimensional Flow Separations. Forschungsbericht DFVLR Göttingen, Germany, IB 221-82-A07, April, (1983).

    Google Scholar 

  9. Danshu, Z., Yu, H.: Dynamic Analysis of Main Steam Valve and Governor Valve or Nuclear Power Turbine. Therm. Turbine 2, 20–32 (1993)

    Google Scholar 

  10. Danbon, F.: Solliec, C.: Aerodynamic Torque of a Butterfly Valve – Influence of an Elbow on the Time-Mean and Instantaneous Aerodynamic Torque. ASME J. Fluids Eng. 122(2), 337–344 (2000)

    Article  Google Scholar 

  11. Deich, M.E., Sapunov, O.G., Shanin, V.K.: Flow of Superheated and Wet Steam in Governor Valves of Steam Turbine. Teploenergetika, Bd. 26., S. 24–31 (1979)

    Google Scholar 

  12. Domnick, C.B., Benra, F.-K., Dohmen, H.J., Musch, C.: Numerical Investigation on the Time-Variant Flow Field and Dynamic Forces in Steam Turbine Inlet Valves. IGTI/ASME Turbo Expo GT2014-25632, Düsseldorf, Germany (2014).

    Google Scholar 

  13. Domnick, C.B.; Benra, F.-K.; Brillert, D.; Dohmen, H.J.; Musch, C.: Investigation of Flow induced Vibrations of a Steam Turbine Inlet Valve considering Fluid Structure Interaction Effects. In: Proceedings ASME Turbo Expo 2016: Conference and Exposition, Volume 8: Microturbines, Turbochargers and Small Turbomachines, GT2016-56314, Seoul, South Korea, June 13–17, (2016).

    Google Scholar 

  14. Flegg, G.H.: From Geometry of Topology. Dover Publications Inc, ■ (1974)

    MATH  Google Scholar 

  15. Gbadebo, S.A.: Three-Dimensional Separations in Compressors. Diss., University of Cambridge, 2003.

    Google Scholar 

  16. Gbadebo, S.A.; Cumpsty, N.A.; Hynes, T.P.: Three-Dimensional Separations in Axial compressors. In: Proceedings of ASME Turbo Expo 2004: Power for Land, Sea and Air, Volume 5: Turbo Expo 2004, Parts A and B, GT2004-53617, Vienna, Austria, June 14–17, (2004), pp. 457–469.

    Google Scholar 

  17. Hardin, J.; Kushner, F.; Koester, S.: Elimination of Flow-Induced Instability from Steam Turbine Control Valves: In: Proceedings of the Thirty-Second Turbomachinery Symposium, George R. Brown Convention Center, Houston, Texas, September 8–11, (2003) pp. 99–108.

    Google Scholar 

  18. Heymann, F.J.; Stationo, M.A.: Steam Turbine Control Valve Noise. 85th Meeting of the Acoustical Society of America, Paper No. M-8, (1973).

    Google Scholar 

  19. Hongsheng, G., Jianming, J., Zurong, W.: Experimental Investigation of Single sided Hydraulic Servomotor. Therm. Turbine 1, 84–95 (1984)

    Google Scholar 

  20. Idelcik, I.: Memento des pertes de charge: coefficients de pertes de charge singulieres et de pertes de charge par frottement. In: Collection de la Direction des Etudes et Recherches d’Electrit et de France, (1986).

    Google Scholar 

  21. Jihai, J., Baozhong, W., Gang, W., Tao, W.: Research on Buffering System of AP 1000 MW Nuclear Steam Turbine in Quick Closing Process. Fluid Power Mission. Control. 73(6), 10–15 (2015)

    Google Scholar 

  22. Jones, T.M.; Larko, J.M.; McNellis, M. E.: Analysis of the STS-126 Flow Control Valve Structural-Acoustic Coupling Failure. NASA/TM-2010-216339, (2010).

    Google Scholar 

  23. Kasilov, V.F., et al.: A Study of Vibronational Activity of the Control Valves in the Steam Admission System of the HP Cylinder in a K-200-130 Steam Turbine. Therm. Eng. 48(48), 890–898 (2001)

    Google Scholar 

  24. Khanin, G.A.: Simulation of Vibrations of Control Valves. Teploenergetika 22, 52–55 (1975)

    Google Scholar 

  25. Kostyuk, A.G., Kumenko, A.I., Nekrasov, A.L., Kalinin, S.V., Medvedev, S.V.: An Experimental Analysis of Pressure Pulsations in the Steam Admission System of a Turbine Installation. Therm. Eng. 47(6), 529–537 (2000)

    Google Scholar 

  26. Leder, A.: Abgelöste Strömungen – Physikalische Grundlagen. Vieweg Verlag, ■ (1991)

    Google Scholar 

  27. Liao, H.: Research on buffering characteristics of servomotor in quick closing process. Harbin, Harbin Institute of Technology, June (2009), pp. 31–61.

    Google Scholar 

  28. Liu, G.; Wang, S.; Guo, H.; Mao, J.; Feng, Z.; Xiang, X.: Investigation on Flow Characteristics and Stability of Control Valves for Steam Turbines. In: Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air, Volume 5: Structures and Dynamics, Parts A and B, GT2008-51016, Berlin, Germany, June 9–13, (2008), pp. 811–820.

    Google Scholar 

  29. Martin, P., Buxmann, J.: Verfahren zur Berechnung der Durchflusscharakteristik von Regelventilen bei. Dampfturbinen, Brennstoff Wärme Kraft, pp. 470--476 (1968).

    Google Scholar 

  30. Menny, K.: Strömungsmaschinen – Hydraulische und thermische Kraft- und Arbeitsmaschinen, 5. Aufl. Vieweg+Teubner Verlag, ■ (2006)

    Google Scholar 

  31. Michaud, S., Ziada, S., Pastorel, H.: Acoustic Fatigue of a Steam Dump Pipe System Excited by Valve Noise. J. Press. Vessel Technol. 123, 461–468 (2001)

    Article  Google Scholar 

  32. Morris, M.J., Dutton, J.C.: Aerodynamic Torque Characteristics of Butterfly Valves in Compressible Flow. ASME J. Fluids Eng. 111(4), 392–399 (1989)

    Article  Google Scholar 

  33. Morris, M.J., Dutton, J.C.: Compressible Flow field Characteristics of Butterfly Valves. Asme J. Fluids Eng. 111(4), 401–407 (1989)

    Google Scholar 

  34. Morris, M.J., Dutton, J.C.: An Experimental Investigation of Butterfly Valve Performance Downstream of an Elbow. Asme J. Fluids Eng. 113(1), 81–85 (1991)

    Article  Google Scholar 

  35. Morris, M.J., Dutton, J.C.: The Performance of Two Butterfly Valves Mounted in Series. Asme J. Fluids Eng. 113(3), 419–423 (1991)

    Article  Google Scholar 

  36. Morita, R., Inada, F., Mori, M., Tezuka, K., Tsujimoto, Y.: CFD Simulations and Experiments in Flow Fluctuations around a Steam Control Valve. Trans. ASME J. Fluid Eng. 129(1), 48–54 (2007)

    Article  Google Scholar 

  37. Nakano, M., Outa, K., Tajima, K.: Noise and Vibration Related to the Patterns of Supersonic Annular Flow in a Pressure Reducing Gas Valve. J. Fluid Eng. 110(1), 55–61 (1988)

    Article  Google Scholar 

  38. Pluvoise, M.: Stabilization of Flow Through Steam Turbine Control Valves. Trans. ASME J. Eng. Gas Turbines Power 111, 642–646 (1989)

    Article  Google Scholar 

  39. Perry, A.E., Chong, M.S.: A Description of Eddying Motions and Flow Patterns Using Critical-Points Concepts. Annu. Rev. Fluid. Mech. 19, 125–155 (1987)

    Article  Google Scholar 

  40. Ponta, F.L., Aref, H.: Strouhal-Reynolds Number Relationship for Vortex Streets. Phys. Rev. Lett. 93(8), 084501 (2004)

    Article  Google Scholar 

  41. Prandtl, L., Durand, W.F. (Hrsg.): The Mechanics of Viscous Fluids. Springer, Berlin – Heidelberg – New York (1924)

    Google Scholar 

  42. Roshko, A.: On the Development of Turbulent Wakes from Vortex Streets. Forschungsbericht Report (1191), California Institute of Technology, (1954).

    Google Scholar 

  43. Stastny, M. et al.: Pulsating Flows in the Inlet of a Nuclear Steam Turbine. 5th European Conference on Turbomachinery, Prague, Czech Republic, (2003).

    Google Scholar 

  44. Stodola, A.: Dampf- und Gasturbinen. Springer, Berlin – Heidelberg – New York (1992)

    Google Scholar 

  45. Strauss, K.: Strömungsmechanik. VCH Verlagsgesellschaft mbH, ■ (1991)

    Google Scholar 

  46. Strauss, K.: Kraftwerkstechnik zur Nutzung fossiler, nuklearer und regenerativer Energiequellen, 6. Aufl. Springer, Berlin – Heidelberg – New York (2009)

    Google Scholar 

  47. Tajc, L., Bednar, L., Stastny, M.: Control Valves for Turbines of Large Output. Trans. Inst. Fluid-flow Mach. 114, 209–218 (2003)

    Google Scholar 

  48. Tecza, J.; Chochua, G.; Moll, R.: Analysis of Fluid-Structure Interaction in a Steam Turbine Throttle Valve. In: Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air, Volume 7: Turbomachinery, Parts A, B and C, GT2010-23788, Glasgow, UK, June 14–18, (2010), pp. 2329–2338.

    Google Scholar 

  49. Tobak, M., Peake, D.J.: Topology of Three-Dimensional Separated Flows. Annu. Rev. Fluid. Mech. 14, 61–85 (1982)

    Article  MathSciNet  Google Scholar 

  50. Traupel, W.: Thermische Turbomaschinen, 4. Aufl. Bd. 2. Springer, Berlin – Heidelberg – New York (2001)

    MATH  Google Scholar 

  51. Wang, P.; Liu, Y.; Hu, Z.; Xu, S.: Rapid Close of a Butterfly Valve placed in a curved Channel: A computational Study of unsteady Steam Flow and Aerodynamic Torque. ASME Turbo Expo 2016: Conference and Exposition, Volume 8: Microturbines, Turbochargers and Small Turbomachines, GT2016-56065, Seoul, South Korea, June 13–17, (2016).

    Google Scholar 

  52. Wenqjang, F.: Study of buffering performance in quick closing of servomotor with external buffer structure and designing of test platform. Shanghai, Shanghai Jiao Tong University, February (2014), pp. 13–55.

    Google Scholar 

  53. Xiao, L.; Xu, S.; He, J.; Hu, Z.; Zhou, X.: Experimental and numerical Investigation of quick closing Buffer Performance of Steam Turbine Admission Valve. In: Proceedings ASME Turbo Expo 2016: Conference and Exposition, Volume 8: Microturbines, Turbochargers and Small Turbomachines, GT2016-56529, Seoul, South Korea, June 13–17, (2016).

    Google Scholar 

  54. Xu, S.; Hu, Z.; He, J.; Xiao, L.; Jiang, P.: Numerical Investigations of History Temperature Field and Stress Field of Main Steam Valve. ASME Turbo Expo 2010: Power for Land, Sea, and Air, Volume 7 Turbomachinery Parts A, B and C, GT2010-26069, June 14–18, Glasgow, UK, (2010).

    Google Scholar 

  55. Leutwyler, Z., Dalton, C.: A Computational Study of Torque and Forces Due to Compressible Flow of a Butterfly Valve Dis in Mid-stroke Position. ASME J. Fluids Eng. 128, 1075 (2006)

    Article  Google Scholar 

  56. Xu, S., Hu, Z., He, J., Xiao, L., Jiang, P.: Numerical Investigations of History Temperature Field and Stress Field of Main Steam Valve, ASME Turbo Expo 2014, GT2014--26069, Düsseldorf, Germany.

    Google Scholar 

  57. Zachary, L., DaHon, C.A.: Computational Study of Torque and Forces Due to Compressible Flow on a Butterfly Valve Disk in Mid-stroke Position, ASME J. Fluids Eng. 128, 1075 (2006)

    Google Scholar 

  58. Zanazzi, G. et al.: Unsteady CFD Simulation of Control Valve in Throttling Conditions and Comparison with Experiments. In: Proceedings of ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, Volume 5B: Oil and Gas Applications, Steam Turbines, GT2013-94788, San Antonio, Texas, USA, June 3–7, (2013).

    Google Scholar 

  59. Zaryankin, A.E., Arianov, S.V., Paramonov, A.N., Gotovtsev, A.M., Storozhuk, S.K.: A new Control Valve with a Push Rod for Intermediate-Pressure Cylinders of Steam Turbines. Therm. Eng. 54, 879–885 (2007)

    Article  Google Scholar 

  60. Zeß, J.-P.; Polklas, T.; Joos, F.: Experimental Investigation of the Flow in a Control Valve of an Industrial Steam Turbine. In: Proceedings ASME Turbo Expo 2016: Conference and Exposition, Volume 8: Microturbines, Turbochargers and Small Turbomachines, GT2016-57215, Seoul, South Korea, June 13–17, (2016).

    Google Scholar 

  61. Zhang, D.: Engeda, A.: Venturi Valves for Steam Turbine and Imroved Design Considerations. Proc. Inst. Mech. Eng. 217, 219–230 (2003)

    Article  Google Scholar 

  62. Zhang, D., Engeda, A., Hardin, J.R., Aungier, R.H.: Experimental Study of Steam Turbine Control Valves. Proc. Inst. Mech. Eng. 218, 493–507 (2004)

    Google Scholar 

  63. Ziada, S., Bühlmann, E.T.: Flow Impingement as an Excitation Source in Control Valves. J. Fluids Struct. 3, 529–549 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joos, F., Polklas, T. (2018). Ventile. In: aus der Wiesche, S., Joos, F. (eds) Handbuch Dampfturbinen. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-20630-7_8

Download citation

Publish with us

Policies and ethics