Skip to main content

Rechnergestützte Verfahren zur aero-thermodynamischen Auslegung und Entwicklung

  • Chapter
  • First Online:
  • 8017 Accesses

Zusammenfassung

In einer Dampfturbine erfolgt die Umwandlung von potentieller Energie in mechanische Energie auf indirektem Weg über die kinetische Energie des Arbeitsmittels. Daraus folgt, dass für die rechnerische Beschreibung der Energieumsetzung Strömungsvorgänge von entscheidender Bedeutung sind. Gerade im Bereich der Strömungen haben in den letzten Jahren rechnergestützte Verfahren eine stürmische Entwicklung erfahren. Numerische Verfahren zur Berechnung von dreidimensionalen Strömungen (CFD = Computational Fluid Dynamics) werden heute im Auslegungs- und Entwicklungsprozess von Dampfturbinen zunehmend eingesetzt. Trotzdem bilden einfachere null-, ein- und zweidimensionale rechnergestützte Berechnungsverfahren nach wie vor das Rückgrat bei der Auslegung von Dampfturbinen. In diesem Kapitel werden die Methoden und ihre Grundlagen kurz beschrieben und es werden Beispiele für deren Anwendung im Bereich der Auslegung und Entwicklung von Dampfturbinen gegeben.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

  1. Adkins, G.G., Smith, L.H.: Spanwise Mixing in Axial-Flow Turbomachines. AMSE J. Eng. Power 104(1), 97–110 (1982)

    Article  Google Scholar 

  2. Belluci, J.; Rubechini, F.; Arnone, A.; Arcangeli, L.; Maceli, N.; Dossena, V.: Optimization of a High-Pressure Steam Turbine Stage for a Wide Flow Coefficient Range. In: Proceedings ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Volume 6: Oil and Gas Applications; Concentrating Solar Power Plants; Steam Turbines; Wind Energy, Paper GT2012-69529, Copenhagen, Denmark, June 11–15, 2012, pp. 615–625.

    Google Scholar 

  3. Birger, O.; Clari, M.: Untersuchung von stationären Strömungsablösungen in den Diffusoren von Regelungsventilen von Dampfturbinen. Dissertation, Helmut-Schmidt-Universität, Universität der Bundeswehr Hamburg 2014.

    Google Scholar 

  4. Burton, Z., Ingram, G.L., Hogg, S.: A Literature Review of Low Pressure Steam Turbine Exhaust Hood and Diffuser Studies. ASME J. Eng. Gas Turbines Power 135(6), 062001-1–062001-10 (2013)

    Article  Google Scholar 

  5. Casey, M.; Wintergerste, T.: Best Practice Guidelines – ERCOFTAC. Version 1.0, 2000.

    Google Scholar 

  6. Chaluvadi, V.S.P.; Kalfas, A.I.; Hodson, H.P.; Ohyama, H.; Watanabe, E.: Blade Row Interaction in a High-Pressure Steam Turbine. ASME J. Turbomachinery 125, (2003).

    Google Scholar 

  7. Chen, B., Yuan, X.: Advanced Aerodynamic Optimization System for Turbomachinery. ASME J. Turbomach. 130(2), 021005-1–021005-12 (2008)

    Article  MathSciNet  Google Scholar 

  8. Cofer, J.I.: Advances in Steam Path Technology. ASME J. Eng. Gas Turbines Power 118(2), 337–352 (1996)

    Article  MathSciNet  Google Scholar 

  9. Cordes, G.: Strömungstechnik der gasbeaufschlagten Axialturbine. Springer, Berlin (1963)

    Book  Google Scholar 

  10. Domnick, C.B.; Benra, K.-F.; Dohmen, H.J.; Musch, C.: Numerical Investigation on the Time Variant Flow Field and Dynamic Forces Acting in Steam Turbine Inlet Valves. In: Proceedings ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 1B: Marine, Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, Paper GT2014-25632, Düsseldorf, Germany, 2014.

    Google Scholar 

  11. Demeulenaere, A.: An Euler / Navier-Stokes Inverse Method for Compressor and Turbine Blade Design. VKI Lecture Series 1997-05.

    Google Scholar 

  12. Denton, J.D.: Throughflow Calculations for Transonic Axial Flow Turbines. ASME J. Eng. Power 100(2), 212–218 (1978)

    Article  Google Scholar 

  13. Denton, J.; Spurr, A.: Aerodynamic Factors in the Design of the Final Stages of Large High Speed Steam Turbines. In: Proceedings Conference Steamturbines for the 1980’s, Paper C193/79, 1979.

    Google Scholar 

  14. Denton, J.: Some Limitations of Turbomachinery CFD. In: Proceedings ASME Turbo Expo 2010: Power for Land, Sea and Air, Volume 7: Turbomachinery, Parts A, B, and C, Paper GT2010-22540, Glasgow, UK, June 14–18, 2010, pp. 735–745.

    Google Scholar 

  15. Drapkin, D.; Kores, F.; Polklas, T.: Integration of an Automatic Optimizer Functionality into the Design Process of Industrial Steam Turbines. In: Proceedings ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Volume 6: Oil and Gas Applications, Concentrating Solar Power Plants; Steam Turbines; Wind Energy, Paper GT2012-68841, Copenhagen, Denmark, June 11–15, 2012, pp. 515–526.

    Google Scholar 

  16. Engelmann, D.: Strömungsmechanische Untersuchung einer Industriedampfturbine mit Fokus auf die Rückführung von Leckdampf. Dissertation, Ruhr-Universität Bochum 2013.

    Google Scholar 

  17. Engelmann, D.; Schramm, A.; Polklas, T.; Mailach, R.: Losses of Steam Admission in Industrial Steam Turbines Depending on Geometrical Parameters. In: Proceedings ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 1B: Marine; Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, Paper GT2014-25172, Düsseldorf, Germany, June 16–20, 2014.

    Google Scholar 

  18. Epple, B., Leithner, R., Linzer, W., Walter, H. (Hrsg.): Simulation von Kraftwerken und Feuerungen, 2. Aufl. Springer, Wien (2012)

    Google Scholar 

  19. Fu, J.L.; Liu; J.J.: Investigations of Influential Factors on the Aerodynamic Performance of a Steam Turbine Exhaust System. Proceedings ASME Turbo Expo 2010: Power for Land, Sea and Air, Volume 7: Turbomachinery, Parts A, B and C, Paper GT2010-22316, Glasgow, UK, June 14–18, 2010.

    Google Scholar 

  20. Gallimore, S.J., Cumpsty, N.A.: Spanwise Mixing in Multistage Axial Compressors: Part I: Experimental Investigation. ASME J. Turbomach. 108(1), 2–9 (1986)

    Article  Google Scholar 

  21. Gallimore, S.J.: Spanwise Mixing in Multistage Axial Compressors: Part II: Throughflow Calculations Including Mixing. ASME J. Turbomach. 108(1), 10–16 (1986)

    Article  Google Scholar 

  22. Gehrer, A.; Lang, H.; Mayrhofer, N.; Woisetschläger, J.: Numerical and Experimental Investigation of Trailing Edge Vortex Shedding Downstream of a Linear Turbine Cascade. In: Proceedings ASME Turbo Expo, Paper 2000-GT-0434.

    Google Scholar 

  23. Giglmayr, I., Nixdorf, M., Pogoreutz, M.: Comparison of Software for Thermodynamic Process Calculation. VGB PowerTech 81(2), 44–51 (2001)

    Google Scholar 

  24. Greim, R.; Havakechian, S.: Recent Advances in the Aerodynamic Design of Steam Turbine Components. VGB Fachtagung, München, 12.–14. Dezember 1999.

    Google Scholar 

  25. Häfele, M.; Taxinger, C.; Grübel, M.; Schatz, M.; Vogt, D.M.; Drozdowski, R.: Experimental and Numerical Investigation of the Flow in a LP Industrial Steam Turbine with Part-Span Connectors. In: Proceedings ASME Turbo expo 2015: Turbine Technical Conference and Exposition, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, Paper GT2015-42202, Montreal Quebec, Canada, June 15–19, 2015.

    Google Scholar 

  26. Harvey, N.W., Rose, M.G., Taylor, M.D., Shahpar, S., Hartland, J., Gregory-Smith, D.G.: Nonaxisymmetric Turbine Endwall Design: Part I – Three-Dimensional Linear design System. ASME J. Turbomach. 122(2), 278–285 (2000)

    Article  Google Scholar 

  27. Havakechian, S.; Greim, R.: Aerodynamic Design of 50 Percent Reaction Steam Turbines. Proc Inst. Mech. Eng., Vol. 213, Part C: Journal of Mechanical Engineering 213 (1999), pp. 1–24.

    Google Scholar 

  28. Havakechian, S., Denton, J.: Three-Dimensional Blade-Stacking Strategies and Understanding of Flow Physics in Low-Pressure Steam Turbines – Part I: Three-Dimensional Stacking Mechanism. ASME J. Eng. Gas Turbines Power 138, 052603-1–052603-10 (2016)

    Google Scholar 

  29. He, L.: Computation of Unsteady Flow Through Steam Turbine Blade Rows at Partial Admission. Proc. Inst. Mech. Eng. 211, Part A: Journal of Power and Energy (1997).

    Google Scholar 

  30. Hecker, S.: Strömungs- und strukturmechanische Untersuchung der Einströmung einer Dampfturbine. Dissertation, Ruhr-Universität Bochum 2011.

    Google Scholar 

  31. Hendricks, R.C.; Flower, R.; Howe, H.: A Brush Seals Program Modeling and Developments. 9th International Symposium on Transport Phenomena in Thermal-Fluids Engineering, Paper NASA TM 107158, Singapore, June 25–28, 1996, pp. 1–7.

    Google Scholar 

  32. Hendricks, R.C.; Kudriatsev, V.V.; Braun, M.J.; Athavale, M.M.: Flows in Pinned Arrays Simulating Brush Seals. International Congress on Fluid Dynamics and Propulsion, Paper NASA TM 107333, Cairo, EG, December 29–31, 1996.

    Google Scholar 

  33. Hirsch, Ch.; Denton, J.D.: Throughflow Calculations in Axial Turbomachines. AGARD-AR-175, 1981.

    Google Scholar 

  34. Hushmandi, N.B.: Numerical Analysis of Partial Admission in Axial Turbines. Dissertation KTH Stockholm 2010.

    Google Scholar 

  35. Jiang, H.; Xu, K.; Li, B.; Xu, X.; Chen, Q.: A Precise Full-Dimensional Design System for Multistage Steam Turbines – Part I: Philosophy and Architecture of the System. In: Proceedings ASME Turbo Expo 2007: Power for Land, Sea and Air, Volume 6: Turbo Expo 2007 Parts A and B, Paper GT2007-27195, Montreal, Canada, May 14–17, 2007, pp. 1209–1218.

    Google Scholar 

  36. Jiyuan, T., Guan, H.Y., Chaoqun, L.: Computational Fluid Dynamics – A Practical Approach. Butterworth-Heinemann, Oxford (2008)

    MATH  Google Scholar 

  37. Kacker, S.C., Okapuu, U.: A Meanline Prediction Model for Axial Flow Turbine Efficiency. Asme J. Eng. Power 104(1), 111–119 (1982)

    Article  Google Scholar 

  38. Kalkkuhl, T.J.: Strömungssimulation einer teilbeaufschlagten Dampfturbine. Dissertation Ruhr-Universität Bochum 2014.

    Google Scholar 

  39. Korakianitis, T., Papagiannidis, P.: Surface-Curvature-Distribution Effects on Turbine-Cascade Performance. ASME J. Turbomach. 115(2), 334–341 (1993)

    Article  Google Scholar 

  40. Kunick, M.; Kretzschmar, H.-J.; di Mare, F.; Gampe, U.: CFD Analysis of Steam Turbines with IAWPS Standard on the Spline-Based Table Look-Up Methdode (SBTL) for the Fast Calculation of Real Fluid Properties. In: ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, Paper GT2015-43984, Montreal, Quebec, Canada, June 15–19, 2015.

    Google Scholar 

  41. Lampart, P.; Szymaniak, M.; Rzadkowski, R.: Unsteady Load of Partial Admission Control Stage Rotor of a Large Power Steam Turbine. In: Proceedings ASME Turbo Expo, Paper GT2004-53886

    Google Scholar 

  42. Lampart, P.; Szymaniak, M.; Kwidzinkski, R.: Numerical Investigation of Unsteady Flow in a Partial Admission Control Stage of 200 MW Turbine. 6th European Conference on Turbomachinery – Fluid Dynamics and Thermodynamics, Lille, France, March 7–11, 2005.

    Google Scholar 

  43. Langston, L.S.: Crossflow in a Turbine Cascade Passage. ASME J. Eng. Power 102(4), 866–874 (1980)

    Article  Google Scholar 

  44. Lewis, K.L.: Spanwise Transport in Axial Turbines: Part 1 – The Multistage Environment. ASME J. Turbomach. 116, 179–186 (1994)

    Article  Google Scholar 

  45. Lewis, K.L.: Spanwise Transport in Axial Turbines: Part 2 – Throughflow Calculations Including Spanwise Transport. ASME J. Turbomach. 116(2), 187–193 (1994)

    Article  MathSciNet  Google Scholar 

  46. Liese, E.: Modeling of a Steam Turbine Including Partial Arc Admission for Use in a Process Simulation Software Environment. Asme J. Eng. Gas Turbines Power 156(11), 112605-1–112605-7 (2014)

    Google Scholar 

  47. Liu, J.J., Liu, G.R., Lam, K.Y.: Investigation of Flow in a Steam Turbine Exhaust Hood With/Without Turbine Exit Conditions Simulated. ASME J. Eng. Gas Turbines Power 125(1), 292–299 (2003)

    Article  Google Scholar 

  48. Mayle, R.E.: The Role of Laminar-Turbulent Transition in Gas Turbine Engines. ASME J. Turbomach. 113(2), 207–216 (1991)

    Article  Google Scholar 

  49. Megerle, B.: Unsteady Aerodynamics of Low-Pressure Steam Turbines Operating Under Low Volume Flow Conditions. Dissertation EPFL Lausanne 2014.

    Google Scholar 

  50. Moser, N.; Volkert, R.; Joos, F.: Numerical Optimization of a Steam Turbine Control Stage by Flowpath Profiling Using Evolutionary Algorithm. In: Proceedings ASME Turbo Expo 2011: Turbo Expo: Turbine Technical Conference and Exposition, Volume 7: Turbomachinery, Parts A, B and C, Paper GT2011-46237, Vancouver, British, Canada, June 6–10, 2011, pp. 2417–2426.

    Google Scholar 

  51. Moser, N.: Experimentelle und numerische Untersuchung des Einflusses von rotationssymmetrischen Seitenwandkonturen auf die Strömung in Regelstufen von Dampfturbinen. Dissertation Helmut-Schmidt-Universität, Hamburg (2015)

    Google Scholar 

  52. Musch, C.: Beitrag zur gekoppelten Auslegung von Endstufen mit Deckband und anschließendem Diffusor in Niederdruck-Dampfturbinen. Dissertation, Ruhr-Universität Bochum 2008.

    Google Scholar 

  53. Musch, C., Stüer, H., Hermle, G.: Optimization Strategy for a Coupled Design of the Last Stage and the Successive Diffuser in a Low Pressure Steam Turbine. ASME J. Turbomach. 135(1), 011013-01–011013-7 (2013)

    Google Scholar 

  54. Nettis, L.; Imparato, E.; Cosi, L.: Optimization of a Large Injection System for Steam Turbines. In: Proceedings ASME Turbo Expo 2015: Turbine Technical Conference and Exposition, Volume 8: Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, Paper GT2015-43007, Montreal, Quebec, Canada, June 15–19, 2015.

    Google Scholar 

  55. Pacciani, R., Rubechini, F., Marconcini, M., Arnone, A., Cecchi, S., Dacca, F.: A CFD-bases troughflow method with an explicit body force model and an adaptive formulation for the S2 streamsurface. Proc IMechE Part A: J Power Energy 230(1), 16–28 (2016)

    Article  Google Scholar 

  56. Petrovic, M., Riess, W.: Off-design flow analysis of low-pressure steam turbines. IMechEProc Inst. Mech. Eng. 211, 215–224 (1997)

    Article  Google Scholar 

  57. Pfleiderer, C., Petermann, H.: Strömungsmaschinen, 7. Aufl. Springer, Berlin (2005)

    Google Scholar 

  58. Polklas, T.: Entwicklung eines numerischen Verfahrens zur strömungsmechanischen Auslegung des Abströmgehäuses einer Niederdruck-Dampfturbine, Dissertation, Universität Duisburg-Essen 2004.

    Google Scholar 

  59. Pullan, G., Harvey, N.W.: Influence of Sweep on Axial Flow Turbine Aerodynamics at Midspan. ASME J. Turbomach. 129(3), 591–598 (2007)

    Article  Google Scholar 

  60. Pullan, G., Harvey, N.W.: Influence of Sweep on Axial Flow Turbine Aerodynamics in the Entwall Region. ASME J. Turbomach. 130(4), 041011-1–041011-10 (2008)

    Article  Google Scholar 

  61. Rosic, B., Mazzoni, C.M., Bignell, Z.: Aerodynamic Analysis of Steam Turbine Feed-Heating Steam Extraction. ASME J. Eng. Gas Turbines Power 136(11), 112602-1–112602-10 (2014)

    Article  Google Scholar 

  62. Rubechini, F.; Marconcini, M.; Arnone, A.; Cecchi, S.; Dacca, F.: Some Aspects of CFD Modeling in the Analysis of a Low-Pressure Steam Turbine. In: Proceedings ASME Turbo Expo 2007: Power for Land, Sea and Air, Volume 6: Turbo Expo 2007, Parts A and B, Paper GT2007-27235, Montreal, Canada, May 14–17, 2007, pp. 519–526.

    Google Scholar 

  63. Rubechini, F., Schneider, A., Arnone, A., Cecchi, S., Malavasi, F.: A Redesign Strategy to Improve the Efficiency of a 17-Stage Steam Turbine. ASME J. Turbomach. 134, 031021-1–031021-7 (2012)

    Article  Google Scholar 

  64. Schobeiri, M.T., Abdelfatah, S., Chibli, H.: Investigating the Cause of Computational Fluid Dynamics Deficiencies in Accurately Predicting the Efficiency and Performance of High Pressure Turbines. A Combined Experimental and Numerical Study. ASME J. Fluids Eng. 134, 101104-1–101104-12 (2012)

    Article  Google Scholar 

  65. Schumann, J.; Sahnen, D.; Jeschke, P.; Harbecke, U.; Polklas, T.; Schwarz, M.A.: Impact of Secondary Flow on the Accuracy of Simplified Design Methods for Steam Turbine Stages. In: Proceedings ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Volume 6: Oil and Gas Applications; Concentrating Solar Power Plants; Steam Turbines; Wind Energy, Paper GT2012-69839, Copenhagen, Denmark, June 11–15, 2012, pp. 695–706.

    Google Scholar 

  66. Schobeiri, M.T., Lu, K.: Endwall Contouring Using Continuous Diffusion: A New Method and its Application to a Three-Stage High Pressure Turbine. ASME J. Turbomach. 136(1), 011006-1–011006-10 (2014)

    Google Scholar 

  67. Schramm, A.; Müller, T.; Polklas, T.; Brunn, O.; Mailach, R.: Improvement of Flow Conditions for the Stages Subsequent to Extration Modules in Industrial Steam Turbines. In: Proceedings ASME Turbo Expo 2014: Turbine Technical Conference and Exposition, Volume 1B: Marine, Microturbines, Turbochargers and Small Turbomachines; Steam Turbines, Paper GT2014-25390, Düsseldorf, Germany, 2014.

    Google Scholar 

  68. Sievert, R.: Analyse der Einflussparameter auf die Strömung im Eintritt von Niederdruck-Dampfturbinen. Dissertation Ruhr-Universität Bochum 2006.

    Google Scholar 

  69. Stephan, I.: Effektivitätssteigerung bei der Auslegung von Dampfturbinenbeschaufelungen durch den Einsatz eines Optimierungsverfahrens, Dissertation, Technische Universität Dresden 2002.

    Google Scholar 

  70. Stein, P., Pfoster, C., Sell, M., Galpin, P., Hansen, T.: Computational Fluid Dynamics Modeling of Low Pressure Steam Turbine Radial Diffuser Flow by Using a Novel Multiple Mixing Plane Based Coupling-Simulation and Validation. ASME J. Gas Turbines Power 138(4), 041604-1–041604-10 (2016)

    Google Scholar 

  71. Stüer, H; Truckenmüller, F.; Borthwick, D.; Denton, J.D.: Aerodynamic Concept for Very Large Steam Turbine Stages. In: Proceedings ASME Turbo Expo 2005: Power for Land, Sea and Air, Volume 6: Turbo Expo 2005, Parts A and B, Paper GT2005-68746, Reno, Nevada, USA, June 6–9, 2005, pp. 673–687.

    Google Scholar 

  72. Traupel, W.: Thermische Turbomaschinen Bd. 1. Springer, Berlin (1977)

    Book  Google Scholar 

  73. Traupel, W.: Thermische Turbomaschinen Bd. 2. Springer, Berlin (1982)

    Book  Google Scholar 

  74. Trigg, M.A., Tubby, G.R., Sheard, A.G.: Automatic Genetic Optimization Approach to Two-Dimensional Blade Profile Design for Steam Turbines. ASME J. Turbomach. 121(1), 11–17 (1999)

    Article  Google Scholar 

  75. Turgut, Ö.H., Camci, C.: Factors Influencing Computational Predictability of Aerodynamic Losses in a Turbine Nozzle Guide Vane Flow. ASME J. Fluids Eng. 108(5), 051103-1–051103-13 (2016)

    Google Scholar 

  76. Völker, L.: Neue Aspekte der aerodynamischen Gestaltung von Niederdruck-Endstufen-Beschaufelungen. Dissertation, Universität Stuttgart 2007.

    Google Scholar 

  77. Völker, L.; Casey, M.; Dunham, J.; Stüer, H.: The Influence of Lean and Sweep in a Low Pressure Steam Turbine: Throughflow Modelling and Experimental Measurements: In: Proceedings ASME Turbo Expo 2008: Power for Land, Sea and Air, Volume 6: Turbomachinery, Parts A, B and C, Paper GT2008-50188, Berlin, Germany, June 9–13, 2008, pp. 999–1008.

    Google Scholar 

  78. Wagner, W., Cooper, J.R., Dittmann, A., Kijima, J., Kretschmar, H.-J., Kruse, A., Mares, R., Oguchi, K., Sato, H., Stöcker, I., Sifner, O., Takaishi, Y., Tanishita, I., Trübenach, J., Wilkommen, Th : The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam. Asme J. Eng. Gas Turbines Power 122(1), 150–184 (2000)

    Article  Google Scholar 

  79. Wang, H.; Zhu, X.; Du, Z.; Yang, H.: Aerodynamic Optimization System Development for Low Pressure Exhaust Hood of Steam Turbine. In: Proceedings ASME Turbo Expo 2010: Power for Land, Sea and Air, Volume 7: Turbomachinery, Parts A, B and C, Paper GT-2010-22280, Glasgow, UK, June 14–18, , 2010, pp. 2139–2148.

    Google Scholar 

  80. Weiss, A.: Aerodynamische Auslegung moderner Niederdruck-Dampfturbinen, ABB Technik 7, 1998.

    Google Scholar 

  81. Wilson, D.G., Korakianitis, T.: The Design of High-Efficiency Turbomachinery and Gas Turbines, 2. Aufl. Prentice Hall, ■ (1998). ISBN 978-0133120004

    Google Scholar 

  82. Wilcox, D.G.: Turbulence Modelling for CFD. La Canada, Californien, USA, DCW Industries Inc., 2006.

    Google Scholar 

  83. Wu, C.H.: A General Theory of Three Dimensional Flow in Subsonic and Supersonic Turbomachines of Axial, Radial and Mixed Flow Types. NACA TN 2604, 1952.

    Google Scholar 

  84. Xu, X.; Xu, K.; Li, B.; Chen, Q.; Jiang, H.: A Precise Full-Dimensional Design System for Multistage Turbines – Part II: Key Technologies For Blade and Non-Blade Components. In: Proceedings ASME Turbo Expo 2007: Power for Land, Sea and Air, Volume 6: Turbo Expo 2007 Parts A and B, Paper GT2007-27197, Montreal, Canada, May 14–17, 2007, pp. 1219–1225.

    Google Scholar 

  85. Yoon, S.; Stanislaus, F.E.; Mokulys, T.; Singh, G.; Claridge, M.: A Three-Dimensional Diffuser Design for the Retrofit of a Low Pressure Turbine Using In-House Exhaust Design System. In: Proceedings ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, Volume 7: Turbomachinery, Parts A, B and C, Paper GT2011-45466, Vancouver, British Columbia, Canada, June 6–10, 2011, pp. 2309–2319.

    Google Scholar 

  86. Zhang, D.; Engeda, A.: Venturi Valves for Steam Turbines and Improved Design Considerations. Proc. Inst. Mech. Eng. 217, Part A: Journal of Power and Energy, (2003), Issue 2.

    Google Scholar 

  87. Zhang, L.Y., He, L., Stüer, H.: A Numerical Investigation of Rotating Instability in Steam Turbine Last Stage. ASME J. Turbomach. 135, 011009-1–011009-9 (2013)

    Article  Google Scholar 

  88. Zweifel, O.: Die Frage der optimalen Schaufelteilung bei Beschaufelungen von Turbomaschinen, insbesondere bei grosser Umlenkung in den Schaufelreihen. BBC Rev. 32(12), 436–444 (1945)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Willinger, R., Polklas, T. (2018). Rechnergestützte Verfahren zur aero-thermodynamischen Auslegung und Entwicklung. In: aus der Wiesche, S., Joos, F. (eds) Handbuch Dampfturbinen. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-20630-7_6

Download citation

Publish with us

Policies and ethics