Advertisement

Der Aufstieg der Kognition

  • Dieter HillertEmail author
Chapter
  • 1.9k Downloads

Zusammenfassung

Komparative Studien mit Makaken und Schimpansen weisen darauf hin, wie sich der linksseitige frontotemporale linguistische Schaltkreis beim Menschen entwickelt haben könnte. Traktographische Untersuchungen verdeutlichen eine graduelle Adaption in Richtung der Verarbeitung von Lautsprache. Die Funktionen der Spiegelneuronen werden in diesem Zusammenhang diskutiert. Komparative Studien zur Vokalisation deuten darauf hin, dass die Fähigkeit, einfache rekursive hierarchische Strukturen zu berechnen, eine Eigenschaft ist, die offensichtlich unter den nicht-ausgestorbenen Arten nur der moderne Mensch besitzt. Wann der Übergang zu intermodalen neuronalen Projektionen stattgefunden hat, lässt sich schwierig bestimmen, aber der Anstieg der kranialen Kapazität beim H. erectus zeigt, dass diese Spezies bereits über sprachliche Kommunikation (z. B. Protosprache) verfügt haben könnte. Verschiedene kulturelle Stadien liefern Hinweise auf die zur Verfügung stehende Kognition und auf die möglichen sprachlichen Fähigkeiten.

Stichwörter

Acheuléen Schimpanse Kraniale Kapazität Faser-Projektionen DTI H. erectus Makake Spiegelneuronen Oldowan Sonogramm Singvögel Vokalisation Arbeitsspeicher 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aboitiz, F. (2012). Gestures, vocalizations, and memory in language origins. Frontiers in Evolutionary Neuroscience, 4(2).Google Scholar
  2. Alp, R. (1993). Meat eating and ant dipping by wild chimpanzees in Sierra Leone. Primates, 34(4), 463–468.Google Scholar
  3. Arbib, M. A. (2005). From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. The Behavioral and Brain Sciences, 28(2), 105–124; discussion 125–167.Google Scholar
  4. Arriaga, G., & Jarvis, E. D. (2013). Mouse vocal communication system: are ultrasounds learned or innate? Brain and Language, 124(1), 96–116.Google Scholar
  5. Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PloS One, 7(10), e46610.Google Scholar
  6. Berwick, R. C., & Chomsky, N. (2016). Why only us? Language and evolution. Cambridge, MA: MIT Press.Google Scholar
  7. Berwick, R. C., & Chomsky, N. (2017). Why Only Us: Recent Questions and Answers. Journal of Neurolinguistics, 43, Part B, 166–77.Google Scholar
  8. Berwick, R. C., Okanoya, K., Beckers, G. J. L., & Bolhuis, J. J. (2011). Songs to syntax: the linguistics of birdsong. Trends in Cognitive Sciences, 15(3), 113–21.Google Scholar
  9. Bickerton, D. (1990). Language and Species. Chicago, IL: The University of Chicago Press.Google Scholar
  10. Bickerton, D. (2009). Adam’s Tongue: How Humans made language, how language made humans. New York: Hill and Wang.Google Scholar
  11. Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11(11), 747–59.Google Scholar
  12. Bosman, C., Garcı́a, R., & Aboitiz, F. (2004). FOXP2 and the language working-memory system. Trends in Cognitive Sciences, 8(6), 251–252.Google Scholar
  13. Broadfield, D. C., Holloway, R. L., Mowbray, K., Silvers, A., Yuan, M. S., Márquez, S. (2001). Endocast of Sambungmacan 3 (Sm 3): a new Homo erectus from Indonesia. Anatomical Record, 262(4), 369–79.Google Scholar
  14. Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Johann Ambrosius Bart.Google Scholar
  15. Buchsbaum, B. R., Olsen, R. K., Koch, P., & Berman, K. F. (2005). Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron, 48(4), 687–97.Google Scholar
  16. Cantalupo, C., & Hopkins, W. D. (2001). Asymmetric Broca’s area in great apes. Nature, 414(6863), 505.Google Scholar
  17. Catani, M., Jones, D. K., & ffytche, D. H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8–16.Google Scholar
  18. Corballis, M. C. (2003). From mouth to hand: gesture, speech and the evolution of right-handedness. The Bhavioral and Brain Sciences, 26(2), 199–208.Google Scholar
  19. Crockford, C., & Boesch, C. (2005). Call combinations in wild chimpanzees. Behaviour, 142, 397–421.Google Scholar
  20. Crockford, C., Herbinger, I., Vigilant, L., & Boesch, C. (2004). Wild chimpanzees produce group-specific calls: a case for vocal learning? Ethology, 110(3), 221–43.Google Scholar
  21. Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.Google Scholar
  22. Dax, M. (1836). Lésions de la moitié gauche de l’encéphale coïncident avec l’oubli des signes de la pensée. Bulletin hebdomadaire de médecine et de chirurgie, 2me série, 2, 259–62.Google Scholar
  23. Deacon, T. W. (1992). Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Research, 573, 8–26.Google Scholar
  24. Deacon, T. W. (1997). The symbolic species: The coevolution of language and the brain. New York: Norton.Google Scholar
  25. Dick, A. S., & Tremblay, P. (2012). Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain, 135(12), 3529–50.Google Scholar
  26. Falk, D. (2007). Evolution of the primate brain. In W. Henke & I. Tattersall (eds.), Handbook of palaeoanthropology, vol. 2: Primate evolution and human origins. Berlin:Google Scholar
  27. Falk, D. (2007). Constraints on brain size: the radiator hypothesis. In J. H. Kaas (ed.), The evolution of nervous systems. Oxford: Academic Press, pp. 347–354.Google Scholar
  28. Fitch, W. T. (2000). The phonetic potential of nonhuman vocal tracts: comparative cineradiographic observations of vocalizing animals. Phonetica, 57(2–4), 205–18.Google Scholar
  29. Fitch, W. T. (2002). Comparative vocal production and the evolution of speech: Reinterpreting the descent of the larynx. In A. Wray (ed.), The transition to language. Oxford: Oxford University Press, pp. 21–45.Google Scholar
  30. Fitch, W. T., & Hauser, M. D. (2004). Computational constraints on syntactic processing in a nonhuman primate. Science, 303(5656), 377–80.Google Scholar
  31. Fleagle, J. G. (1999). Primate Adaptation and Evolution. San Diego, CA: Academic Press.Google Scholar
  32. Flinn, M. V., Geary, D. C., & Ward, C. V. (2005). Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolution and Human Behavior, 26, 10–46.Google Scholar
  33. Frey, S., Campbell, J. S. W., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tractography. The Journal of Neuroscience, 28(45), 11435–44.Google Scholar
  34. Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinion in Neurobiology, 23(2), 250–54.Google Scholar
  35. Galaburda, A. M., & Pandya, D. N. (1982). Role of architectonics and connections in the study of primate brain evolution. In E. Armstrong & D. Falk (eds.), Primate brain evolution: methods and concepts. New York: Plenum Press, pp. 203–16.Google Scholar
  36. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain: A Journal of Neurology, 119 (2), 593–609.Google Scholar
  37. Gannon, P. J., Holloway, R. L., Broadfield, D. C., & Braun, A. R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279(5348), 220–22.Google Scholar
  38. Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440(7088), 1204–07.Google Scholar
  39. Glasser, M. F., & Rilling, J. K. (2008). DTI tractography of the human brain’s language pathways. Cerebral Cortex, 18(11), 2471–82.Google Scholar
  40. Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it and how did it evolve? Science, 298, 1569–79.Google Scholar
  41. Hauser, M. D., & Fitch, W. T. (2003). What are the uniquely human components of the language faculty? In M. H. Christiansen & S. Kirby (eds.), Language evolution. Oxford: University Press Scholarship, pp. 158–81.Google Scholar
  42. Henshilwoo, C. S., d’Errico, F., van Niekerk, K. L., Coquinot, Y., Jacobs, Z., Lauritzen, S. E., Menu, M., & García-Moreno, R. (2011). 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science, 334(6053), 219–22.Google Scholar
  43. Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.Google Scholar
  44. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.Google Scholar
  45. Holloway, R. L., & de La Costelareymondie, M. C. (1982). Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. American Journal of Physical Anthropology, 58(1), 101–10.Google Scholar
  46. Holloway, R. L. (2002). Brief communication: how much larger is the relative volume of area 10 of the prefrontal cortex in humans? American Journal of Physical Anthropology, 118(4), 339–401.Google Scholar
  47. Hopkins, W. D., Marino, L., Rilling, J. K., & MacGregor, L. A. (1998). Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI). NeuroRreport, 9, 2913–18.Google Scholar
  48. Izumi, A., & Kojima, S. (2004). Matching vocalizations to vocalizing faces in a chimpanzee (Pan troglodytes). Animal Cognition, 7(3), 179–84.Google Scholar
  49. Jackendoff, R. (1987). The Status of Thematic Relations in Linguistic Theory. Linguistic Inquiry, 18(3), 369–411.Google Scholar
  50. Jackson, W. J., Reite, M. L., & Buxton, D. F. (1969). The chimpanzee central nervous system: A comparative review. Primates in Medicine, 4, 1–51.Google Scholar
  51. Jarvis, E. D. (2006). Evolution of vocal learning systems in birds and humans. In: J. Kass (ed.), Evolution of nervous systems, vol. 2, 213–28.Google Scholar
  52. Jürgens, U. (2003). From mouth to mouth and hand to hand: On language evolution. Behavioral and Brain Sciences, 26(2), 229–30.Google Scholar
  53. Jürgens, U. (2009). The neural control of vocalization in mammals: a review. Journal of Voice: Official Journal of the Voice Foundation, 23(1), 1–10.Google Scholar
  54. Kako, E. (1999). Elements of syntax in the systems of three language-trained animals. Animal Learning & Behavior, 27(1), 1–14.Google Scholar
  55. Kelly, C., & Uddin, L. Q., Shehzad, Z., Margulies, D. S., Xavier Castellanos, F., Milham, M. P., & Petrides, M. (2010). Broca’s region: linking human brain functional connectivity data and non-human primate tracing anatomy studies. European Journal of Neuroscience, 32, 383–98.Google Scholar
  56. Lam, Y.-W., & Sherman, S. M. (2010). Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cerebral Cortex, 20(1), 13–24.Google Scholar
  57. Levréro, F., & Mathevon, N. (2013). Vocal signature in wild infant chimpanzees. American Journal of Primatology, 75(4), 324–32.Google Scholar
  58. Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 1–36.Google Scholar
  59. Lichtheim, L. (1884). Ueber Aphasie. Deutsches Archiv Für Klinische Medicin, 36, 204–68.Google Scholar
  60. Lieberman, P. (1968). Primate vocalizations and human linguistic ability. Journal of the Acoustic Society of America, 44, 1574–1584.Google Scholar
  61. Marean, C. W. (2010). Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: The Cape Floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59(3–4), 425–43.Google Scholar
  62. Matelli, M., Luppino, G., & Rizzolatti, G. (1985). Patterns of cytochrome oxidase activity in the frontal agranular cortex of macaque monkey. Patterns of Cytochrome Oxidase Activity in the Frontal Agranular Cortex of Macaque Monkey, 18, 125–36.Google Scholar
  63. McElligott, A. G., Birrer, M., & Vannoni, E. (2006). Retraction of the mobile descended larynx during groaning enables fallow bucks (Dama dama) to lower their formant frequencies. Journal of Zoology, 270(2), 340–45.Google Scholar
  64. Nishimura, T. (2003). Comparative morphology of the hyo-laryngeal complex in anthropoids: two steps in the evolution of the descent of the larynx. Primates, 44, 41–9.Google Scholar
  65. Nishimura, T., Mikami, A., Suzuki, J., & Matsuzawa, T. (2003). Descent of the larynx in chimpanzee infants. In Proceedings of the National Academy of Science 100(12), 6930–3.Google Scholar
  66. Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M.-N., & Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408(6812), 537.Google Scholar
  67. Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 14(1), 68–78.Google Scholar
  68. Payne, R. S., & McVay, S. (1971). Songs of Humpback Whales. Science, 173(3997), 585–97.Google Scholar
  69. Petkov, C. I., & Jarvis, E. D. (2012). Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 4.Google Scholar
  70. Petrides, M., & Pandya, D. N. (2006). Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. The Journal of Comparative Neurology, 498(2), 227–51.Google Scholar
  71. Petrides, M., & Pandya, D. N. (2009). Distinct Parietal and Temporal Pathways to the Homologues of Broca’s Area in the Monkey. PLoS Biol, 7(8), e1000170.Google Scholar
  72. Pooley, R. A. (2005). AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 25(4), 1087–99.Google Scholar
  73. Preuss, T. M., & Goldman-Rakic, P. S. (1991). Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. The Journal of Comparative Neurology, 310(4), 475–506.Google Scholar
  74. Rauschecker, J. P. (2011). An expanded role for the dorsal auditory pathway in sensorimotor control and integration. Hearing Research, 271, 16–25.Google Scholar
  75. Riede, T., Owren, M. J., & Arcadi, A. C. (2004). Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): Frequency jumps, subharmonics, biphonation, and deterministic chaos. American Journal of Primatology, 64(3), 277–91.Google Scholar
  76. Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. J. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11, 426–28.Google Scholar
  77. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–92.Google Scholar
  78. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research. Cognitive Brain Research, 3(2), 131–41.Google Scholar
  79. Rolheiser, T., Stamatakis, E. A., & Tyler, L. K. (2011). Dynamic processing in the human language system: Synergy between the arcuate fascicle and extreme capsule. The Journal of Neuroscience, 31(47), 16949–57.Google Scholar
  80. Russel, B. (1903). The principles of mathematics. Cambridge: University Press.Google Scholar
  81. Saur, D., Kreher B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M. S., Umarova, R., Musso, M., Glauche, V., Abel, S., Huber, W., Rijntjes, M., Hennig, J., & Weiller, C. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Science, 105(46), 18035–40.Google Scholar
  82. Saxe, R., & Powell, L. J. (2006). It’s the thought that counts: specific brain regions for one component of theory of mind. Psychology Science, 17(8), 692–9.Google Scholar
  83. Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’Arceuil, H. E., Crespigny, A. J. de, & Wedeen, V. J. (2007). Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130(3), 630–53.Google Scholar
  84. Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (1998). Limbic frontal cortex in hominoids: A comparative study of area 13. American Journal of Physical Anthropology, 106, 129–155.Google Scholar
  85. Sherwood, C. C., Broadfield, D. C., Holloway, R. L., Gannon, P. J., & Hof, P. R. (2003). Variability of Broca’s area homologue in African great apes: implications for language evolution. Anatomical Record A. Discoveries in Molecular Cellular Evolutionary Biology, 271(2), 276–85.Google Scholar
  86. Slocombe, K. E., & Zuberbühler, K. (2007). Chimpanzees modify recruitment screams as a function of audience composition. In Proceedings of the National Academy of Sciences of the United States of America, 104, 17228–33Google Scholar
  87. Stout, D. (2008). Technology and Human Brain Evolution. General Anthropology, 15, 1–5.Google Scholar
  88. Stout, D. (2011). Stone toolmaking and the evolution of human culture and cognition. Philosophical Transactions of the Royal Society of London B, 366, 1050–59.Google Scholar
  89. Suge, R., & Okanoya, K. (2009). Perceptual chunking in the self-produced songs of Bengalese finches (Lonchura striata var. domestica). Animal Cognition, 13(3), 515–23.Google Scholar
  90. Suzuki, R., Buck, J. R., & Tyack, P. L. (2006). Information entropy of humpback whale songs. The Journal of the Acoustical Society of America, 119(3), 1849–66.Google Scholar
  91. Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4(2), 157–65.Google Scholar
  92. Wada, H., Sekino, M., Ohsaki, H., Hisatsune, T., Ikehira, H., & Kiyoshi, T. (2010). Prospect of high-field MRI. IEEE Transactions on Applied Superconductivity, 20(3), 115–22.Google Scholar
  93. Wernicke, C. (1874). Der aphasiche Symptomenkomplex. Eine psychologische Studie auf anayomischer Basis. Breslau: Cohn & Weigert. [German]Google Scholar
  94. Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7, 701–2.Google Scholar
  95. Zhang, K., & Sejnowski, T. J. (2000). A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Science, 97(10), 5621–6.Google Scholar
  96. Zilles, K., Dabringhaus, A., Geyer, S., Amunts, K., Qü, M., Schleicher, A., Gilissen, E., Schlaug, G., & Steinmetz, H. (1996). Neuroscience Biobehavioral Reviews, 20(4), 593–605.Google Scholar
  97. Zuberbühler, K., Cheney, D. L., & Seyfarth, R. M. (1999). Conceptual semantics in a nonhuman primate. Journal of Comparative Psychology, 113(1), 33–42.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.School of MedicineUniversity of California, San DiegoSan Diego, La JollaUSA

Personalised recommendations