Skip to main content

Der Aufstieg der Kognition

  • Chapter
  • First Online:
Book cover Die Natur der Sprache
  • 3728 Accesses

Zusammenfassung

Komparative Studien mit Makaken und Schimpansen weisen darauf hin, wie sich der linksseitige frontotemporale linguistische Schaltkreis beim Menschen entwickelt haben könnte. Traktographische Untersuchungen verdeutlichen eine graduelle Adaption in Richtung der Verarbeitung von Lautsprache. Die Funktionen der Spiegelneuronen werden in diesem Zusammenhang diskutiert. Komparative Studien zur Vokalisation deuten darauf hin, dass die Fähigkeit, einfache rekursive hierarchische Strukturen zu berechnen, eine Eigenschaft ist, die offensichtlich unter den nicht-ausgestorbenen Arten nur der moderne Mensch besitzt. Wann der Übergang zu intermodalen neuronalen Projektionen stattgefunden hat, lässt sich schwierig bestimmen, aber der Anstieg der kranialen Kapazität beim H. erectus zeigt, dass diese Spezies bereits über sprachliche Kommunikation (z. B. Protosprache) verfügt haben könnte. Verschiedene kulturelle Stadien liefern Hinweise auf die zur Verfügung stehende Kognition und auf die möglichen sprachlichen Fähigkeiten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aboitiz, F. (2012). Gestures, vocalizations, and memory in language origins. Frontiers in Evolutionary Neuroscience, 4(2).

    Google Scholar 

  • Alp, R. (1993). Meat eating and ant dipping by wild chimpanzees in Sierra Leone. Primates, 34(4), 463–468.

    Google Scholar 

  • Arbib, M. A. (2005). From monkey-like action recognition to human language: an evolutionary framework for neurolinguistics. The Behavioral and Brain Sciences, 28(2), 105–124; discussion 125–167.

    Google Scholar 

  • Arriaga, G., & Jarvis, E. D. (2013). Mouse vocal communication system: are ultrasounds learned or innate? Brain and Language, 124(1), 96–116.

    Google Scholar 

  • Arriaga, G., Zhou, E. P., & Jarvis, E. D. (2012). Of mice, birds, and men: the mouse ultrasonic song system has some features similar to humans and song-learning birds. PloS One, 7(10), e46610.

    Google Scholar 

  • Berwick, R. C., & Chomsky, N. (2016). Why only us? Language and evolution. Cambridge, MA: MIT Press.

    Google Scholar 

  • Berwick, R. C., & Chomsky, N. (2017). Why Only Us: Recent Questions and Answers. Journal of Neurolinguistics, 43, Part B, 166–77.

    Google Scholar 

  • Berwick, R. C., Okanoya, K., Beckers, G. J. L., & Bolhuis, J. J. (2011). Songs to syntax: the linguistics of birdsong. Trends in Cognitive Sciences, 15(3), 113–21.

    Google Scholar 

  • Bickerton, D. (1990). Language and Species. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Bickerton, D. (2009). Adam’s Tongue: How Humans made language, how language made humans. New York: Hill and Wang.

    Google Scholar 

  • Bolhuis, J. J., Okanoya, K., & Scharff, C. (2010). Twitter evolution: converging mechanisms in birdsong and human speech. Nature Reviews Neuroscience, 11(11), 747–59.

    Google Scholar 

  • Bosman, C., Garcı́a, R., & Aboitiz, F. (2004). FOXP2 and the language working-memory system. Trends in Cognitive Sciences, 8(6), 251–252.

    Google Scholar 

  • Broadfield, D. C., Holloway, R. L., Mowbray, K., Silvers, A., Yuan, M. S., Márquez, S. (2001). Endocast of Sambungmacan 3 (Sm 3): a new Homo erectus from Indonesia. Anatomical Record, 262(4), 369–79.

    Google Scholar 

  • Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Johann Ambrosius Bart.

    Google Scholar 

  • Buchsbaum, B. R., Olsen, R. K., Koch, P., & Berman, K. F. (2005). Human dorsal and ventral auditory streams subserve rehearsal-based and echoic processes during verbal working memory. Neuron, 48(4), 687–97.

    Google Scholar 

  • Cantalupo, C., & Hopkins, W. D. (2001). Asymmetric Broca’s area in great apes. Nature, 414(6863), 505.

    Google Scholar 

  • Catani, M., Jones, D. K., & ffytche, D. H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8–16.

    Google Scholar 

  • Corballis, M. C. (2003). From mouth to hand: gesture, speech and the evolution of right-handedness. The Bhavioral and Brain Sciences, 26(2), 199–208.

    Google Scholar 

  • Crockford, C., & Boesch, C. (2005). Call combinations in wild chimpanzees. Behaviour, 142, 397–421.

    Google Scholar 

  • Crockford, C., Herbinger, I., Vigilant, L., & Boesch, C. (2004). Wild chimpanzees produce group-specific calls: a case for vocal learning? Ethology, 110(3), 221–43.

    Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. London: John Murray.

    Google Scholar 

  • Dax, M. (1836). Lésions de la moitié gauche de l’encéphale coïncident avec l’oubli des signes de la pensée. Bulletin hebdomadaire de médecine et de chirurgie, 2me série, 2, 259–62.

    Google Scholar 

  • Deacon, T. W. (1992). Cortical connections of the inferior arcuate sulcus cortex in the macaque brain. Brain Research, 573, 8–26.

    Google Scholar 

  • Deacon, T. W. (1997). The symbolic species: The coevolution of language and the brain. New York: Norton.

    Google Scholar 

  • Dick, A. S., & Tremblay, P. (2012). Beyond the arcuate fasciculus: consensus and controversy in the connectional anatomy of language. Brain, 135(12), 3529–50.

    Google Scholar 

  • Falk, D. (2007). Evolution of the primate brain. In W. Henke & I. Tattersall (eds.), Handbook of palaeoanthropology, vol. 2: Primate evolution and human origins. Berlin:

    Google Scholar 

  • Falk, D. (2007). Constraints on brain size: the radiator hypothesis. In J. H. Kaas (ed.), The evolution of nervous systems. Oxford: Academic Press, pp. 347–354.

    Google Scholar 

  • Fitch, W. T. (2000). The phonetic potential of nonhuman vocal tracts: comparative cineradiographic observations of vocalizing animals. Phonetica, 57(2–4), 205–18.

    Google Scholar 

  • Fitch, W. T. (2002). Comparative vocal production and the evolution of speech: Reinterpreting the descent of the larynx. In A. Wray (ed.), The transition to language. Oxford: Oxford University Press, pp. 21–45.

    Google Scholar 

  • Fitch, W. T., & Hauser, M. D. (2004). Computational constraints on syntactic processing in a nonhuman primate. Science, 303(5656), 377–80.

    Google Scholar 

  • Fleagle, J. G. (1999). Primate Adaptation and Evolution. San Diego, CA: Academic Press.

    Google Scholar 

  • Flinn, M. V., Geary, D. C., & Ward, C. V. (2005). Ecological dominance, social competition, and coalitionary arms races: Why humans evolved extraordinary intelligence. Evolution and Human Behavior, 26, 10–46.

    Google Scholar 

  • Frey, S., Campbell, J. S. W., Pike, G. B., & Petrides, M. (2008). Dissociating the human language pathways with high angular resolution diffusion fiber tractography. The Journal of Neuroscience, 28(45), 11435–44.

    Google Scholar 

  • Friederici, A. D., & Gierhan, S. M. (2013). The language network. Current Opinion in Neurobiology, 23(2), 250–54.

    Google Scholar 

  • Galaburda, A. M., & Pandya, D. N. (1982). Role of architectonics and connections in the study of primate brain evolution. In E. Armstrong & D. Falk (eds.), Primate brain evolution: methods and concepts. New York: Plenum Press, pp. 203–16.

    Google Scholar 

  • Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain: A Journal of Neurology, 119 (2), 593–609.

    Google Scholar 

  • Gannon, P. J., Holloway, R. L., Broadfield, D. C., & Braun, A. R. (1998). Asymmetry of chimpanzee planum temporale: Humanlike pattern of Wernicke’s brain language area homolog. Science, 279(5348), 220–22.

    Google Scholar 

  • Gentner, T. Q., Fenn, K. M., Margoliash, D., & Nusbaum, H. C. (2006). Recursive syntactic pattern learning by songbirds. Nature, 440(7088), 1204–07.

    Google Scholar 

  • Glasser, M. F., & Rilling, J. K. (2008). DTI tractography of the human brain’s language pathways. Cerebral Cortex, 18(11), 2471–82.

    Google Scholar 

  • Hauser, M. D., Chomsky, N., & Fitch, W. T. (2002). The faculty of language: What is it, who has it and how did it evolve? Science, 298, 1569–79.

    Google Scholar 

  • Hauser, M. D., & Fitch, W. T. (2003). What are the uniquely human components of the language faculty? In M. H. Christiansen & S. Kirby (eds.), Language evolution. Oxford: University Press Scholarship, pp. 158–81.

    Google Scholar 

  • Henshilwoo, C. S., d’Errico, F., van Niekerk, K. L., Coquinot, Y., Jacobs, Z., Lauritzen, S. E., Menu, M., & García-Moreno, R. (2011). 100,000-year-old ochre-processing workshop at Blombos Cave, South Africa. Science, 334(6053), 219–22.

    Google Scholar 

  • Hickok, G., & Poeppel, D. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition, 92(1–2), 67–99.

    Google Scholar 

  • Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.

    Google Scholar 

  • Holloway, R. L., & de La Costelareymondie, M. C. (1982). Brain endocast asymmetry in pongids and hominids: some preliminary findings on the paleontology of cerebral dominance. American Journal of Physical Anthropology, 58(1), 101–10.

    Google Scholar 

  • Holloway, R. L. (2002). Brief communication: how much larger is the relative volume of area 10 of the prefrontal cortex in humans? American Journal of Physical Anthropology, 118(4), 339–401.

    Google Scholar 

  • Hopkins, W. D., Marino, L., Rilling, J. K., & MacGregor, L. A. (1998). Planum temporale asymmetries in great apes as revealed by magnetic resonance imaging (MRI). NeuroRreport, 9, 2913–18.

    Google Scholar 

  • Izumi, A., & Kojima, S. (2004). Matching vocalizations to vocalizing faces in a chimpanzee (Pan troglodytes). Animal Cognition, 7(3), 179–84.

    Google Scholar 

  • Jackendoff, R. (1987). The Status of Thematic Relations in Linguistic Theory. Linguistic Inquiry, 18(3), 369–411.

    Google Scholar 

  • Jackson, W. J., Reite, M. L., & Buxton, D. F. (1969). The chimpanzee central nervous system: A comparative review. Primates in Medicine, 4, 1–51.

    Google Scholar 

  • Jarvis, E. D. (2006). Evolution of vocal learning systems in birds and humans. In: J. Kass (ed.), Evolution of nervous systems, vol. 2, 213–28.

    Google Scholar 

  • Jürgens, U. (2003). From mouth to mouth and hand to hand: On language evolution. Behavioral and Brain Sciences, 26(2), 229–30.

    Google Scholar 

  • Jürgens, U. (2009). The neural control of vocalization in mammals: a review. Journal of Voice: Official Journal of the Voice Foundation, 23(1), 1–10.

    Google Scholar 

  • Kako, E. (1999). Elements of syntax in the systems of three language-trained animals. Animal Learning & Behavior, 27(1), 1–14.

    Google Scholar 

  • Kelly, C., & Uddin, L. Q., Shehzad, Z., Margulies, D. S., Xavier Castellanos, F., Milham, M. P., & Petrides, M. (2010). Broca’s region: linking human brain functional connectivity data and non-human primate tracing anatomy studies. European Journal of Neuroscience, 32, 383–98.

    Google Scholar 

  • Lam, Y.-W., & Sherman, S. M. (2010). Functional organization of the somatosensory cortical layer 6 feedback to the thalamus. Cerebral Cortex, 20(1), 13–24.

    Google Scholar 

  • Levréro, F., & Mathevon, N. (2013). Vocal signature in wild infant chimpanzees. American Journal of Primatology, 75(4), 324–32.

    Google Scholar 

  • Liberman, A. M., & Mattingly, I. G. (1985). The motor theory of speech perception revised. Cognition, 21(1), 1–36.

    Google Scholar 

  • Lichtheim, L. (1884). Ueber Aphasie. Deutsches Archiv Für Klinische Medicin, 36, 204–68.

    Google Scholar 

  • Lieberman, P. (1968). Primate vocalizations and human linguistic ability. Journal of the Acoustic Society of America, 44, 1574–1584.

    Google Scholar 

  • Marean, C. W. (2010). Pinnacle Point Cave 13B (Western Cape Province, South Africa) in context: The Cape Floral kingdom, shellfish, and modern human origins. Journal of Human Evolution, 59(3–4), 425–43.

    Google Scholar 

  • Matelli, M., Luppino, G., & Rizzolatti, G. (1985). Patterns of cytochrome oxidase activity in the frontal agranular cortex of macaque monkey. Patterns of Cytochrome Oxidase Activity in the Frontal Agranular Cortex of Macaque Monkey, 18, 125–36.

    Google Scholar 

  • McElligott, A. G., Birrer, M., & Vannoni, E. (2006). Retraction of the mobile descended larynx during groaning enables fallow bucks (Dama dama) to lower their formant frequencies. Journal of Zoology, 270(2), 340–45.

    Google Scholar 

  • Nishimura, T. (2003). Comparative morphology of the hyo-laryngeal complex in anthropoids: two steps in the evolution of the descent of the larynx. Primates, 44, 41–9.

    Google Scholar 

  • Nishimura, T., Mikami, A., Suzuki, J., & Matsuzawa, T. (2003). Descent of the larynx in chimpanzee infants. In Proceedings of the National Academy of Science 100(12), 6930–3.

    Google Scholar 

  • Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M.-N., & Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408(6812), 537.

    Google Scholar 

  • Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 14(1), 68–78.

    Google Scholar 

  • Payne, R. S., & McVay, S. (1971). Songs of Humpback Whales. Science, 173(3997), 585–97.

    Google Scholar 

  • Petkov, C. I., & Jarvis, E. D. (2012). Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience, 4.

    Google Scholar 

  • Petrides, M., & Pandya, D. N. (2006). Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey. The Journal of Comparative Neurology, 498(2), 227–51.

    Google Scholar 

  • Petrides, M., & Pandya, D. N. (2009). Distinct Parietal and Temporal Pathways to the Homologues of Broca’s Area in the Monkey. PLoS Biol, 7(8), e1000170.

    Google Scholar 

  • Pooley, R. A. (2005). AAPM/RSNA physics tutorial for residents: fundamental physics of MR imaging. Radiographics: A Review Publication of the Radiological Society of North America, Inc, 25(4), 1087–99.

    Google Scholar 

  • Preuss, T. M., & Goldman-Rakic, P. S. (1991). Architectonics of the parietal and temporal association cortex in the strepsirhine primate Galago compared to the anthropoid primate Macaca. The Journal of Comparative Neurology, 310(4), 475–506.

    Google Scholar 

  • Rauschecker, J. P. (2011). An expanded role for the dorsal auditory pathway in sensorimotor control and integration. Hearing Research, 271, 16–25.

    Google Scholar 

  • Riede, T., Owren, M. J., & Arcadi, A. C. (2004). Nonlinear acoustics in pant hoots of common chimpanzees (Pan troglodytes): Frequency jumps, subharmonics, biphonation, and deterministic chaos. American Journal of Primatology, 64(3), 277–91.

    Google Scholar 

  • Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., & Behrens, T. E. J. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11, 426–28.

    Google Scholar 

  • Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–92.

    Google Scholar 

  • Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Research. Cognitive Brain Research, 3(2), 131–41.

    Google Scholar 

  • Rolheiser, T., Stamatakis, E. A., & Tyler, L. K. (2011). Dynamic processing in the human language system: Synergy between the arcuate fascicle and extreme capsule. The Journal of Neuroscience, 31(47), 16949–57.

    Google Scholar 

  • Russel, B. (1903). The principles of mathematics. Cambridge: University Press.

    Google Scholar 

  • Saur, D., Kreher B. W., Schnell, S., Kümmerer, D., Kellmeyer, P., Vry, M. S., Umarova, R., Musso, M., Glauche, V., Abel, S., Huber, W., Rijntjes, M., Hennig, J., & Weiller, C. (2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Science, 105(46), 18035–40.

    Google Scholar 

  • Saxe, R., & Powell, L. J. (2006). It’s the thought that counts: specific brain regions for one component of theory of mind. Psychology Science, 17(8), 692–9.

    Google Scholar 

  • Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’Arceuil, H. E., Crespigny, A. J. de, & Wedeen, V. J. (2007). Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130(3), 630–53.

    Google Scholar 

  • Semendeferi, K., Armstrong, E., Schleicher, A., Zilles, K., & Van Hoesen, G. W. (1998). Limbic frontal cortex in hominoids: A comparative study of area 13. American Journal of Physical Anthropology, 106, 129–155.

    Google Scholar 

  • Sherwood, C. C., Broadfield, D. C., Holloway, R. L., Gannon, P. J., & Hof, P. R. (2003). Variability of Broca’s area homologue in African great apes: implications for language evolution. Anatomical Record A. Discoveries in Molecular Cellular Evolutionary Biology, 271(2), 276–85.

    Google Scholar 

  • Slocombe, K. E., & Zuberbühler, K. (2007). Chimpanzees modify recruitment screams as a function of audience composition. In Proceedings of the National Academy of Sciences of the United States of America, 104, 17228–33

    Google Scholar 

  • Stout, D. (2008). Technology and Human Brain Evolution. General Anthropology, 15, 1–5.

    Google Scholar 

  • Stout, D. (2011). Stone toolmaking and the evolution of human culture and cognition. Philosophical Transactions of the Royal Society of London B, 366, 1050–59.

    Google Scholar 

  • Suge, R., & Okanoya, K. (2009). Perceptual chunking in the self-produced songs of Bengalese finches (Lonchura striata var. domestica). Animal Cognition, 13(3), 515–23.

    Google Scholar 

  • Suzuki, R., Buck, J. R., & Tyack, P. L. (2006). Information entropy of humpback whale songs. The Journal of the Acoustical Society of America, 119(3), 1849–66.

    Google Scholar 

  • Ungerleider, L. G., & Haxby, J. V. (1994). “What” and “where” in the human brain. Current Opinion in Neurobiology, 4(2), 157–65.

    Google Scholar 

  • Wada, H., Sekino, M., Ohsaki, H., Hisatsune, T., Ikehira, H., & Kiyoshi, T. (2010). Prospect of high-field MRI. IEEE Transactions on Applied Superconductivity, 20(3), 115–22.

    Google Scholar 

  • Wernicke, C. (1874). Der aphasiche Symptomenkomplex. Eine psychologische Studie auf anayomischer Basis. Breslau: Cohn & Weigert. [German]

    Google Scholar 

  • Wilson, S. M., Saygin, A. P., Sereno, M. I., & Iacoboni, M. (2004). Listening to speech activates motor areas involved in speech production. Nature Neuroscience, 7, 701–2.

    Google Scholar 

  • Zhang, K., & Sejnowski, T. J. (2000). A universal scaling law between gray matter and white matter of cerebral cortex. Proceedings of the National Academy of Science, 97(10), 5621–6.

    Google Scholar 

  • Zilles, K., Dabringhaus, A., Geyer, S., Amunts, K., Qü, M., Schleicher, A., Gilissen, E., Schlaug, G., & Steinmetz, H. (1996). Neuroscience Biobehavioral Reviews, 20(4), 593–605.

    Google Scholar 

  • Zuberbühler, K., Cheney, D. L., & Seyfarth, R. M. (1999). Conceptual semantics in a nonhuman primate. Journal of Comparative Psychology, 113(1), 33–42.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter Hillert .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hillert, D. (2018). Der Aufstieg der Kognition. In: Die Natur der Sprache. Springer, Wiesbaden. https://doi.org/10.1007/978-3-658-20113-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-20113-5_5

  • Published:

  • Publisher Name: Springer, Wiesbaden

  • Print ISBN: 978-3-658-20112-8

  • Online ISBN: 978-3-658-20113-5

  • eBook Packages: Psychology (German Language)

Publish with us

Policies and ethics