Advertisement

Die Abstammung des Menschen

  • Dieter HillertEmail author
Chapter
  • 1.9k Downloads

Zusammenfassung

Hominiden-Fossilien sowie genetische Daten verdeutlichen, dass die Evolution von kognitiven und sprachlichen Kapazitäten beim modernen Menschen nicht auf eine einzelne massive Mutation zurückgeführt werden kann. Seitdem sich die Gattung Homo von der Gattung Pan abgespalten hat, trat offensichtlich eine graduelle Evolution kognitiver und sprachlicher Fähigkeiten ein. Die kraniale Kapazität, die vermutlich mit der kognitiven Kapazität korreliert, erhöhte sich systematisch im Verlauf der menschlichen Abstammungsgeschichte, wenn die Arten H. floresensis und Paranthropus nicht berücksichtigt werden. Zahlreiche externe und intrinsische Faktoren dürften die kognitive Evolution ausgelöst haben, wobei soziale Faktoren offensichtlich eine entscheidende Rolle gespielt haben. Entsprechend wird geschlussfolgert, dass die Evolution der „biologischen Disposition für Sprache“ im Einklang mit der Evolution anderer kognitiver Kapazitäten erfolgte und auf graduellen Mutationen beruht.

Stichwörter

Anzestrale Migration Biologische Disposition Kraniale Kapazität Hominidenfossilien mtDNA Multiregionale Hypothese Out-of-Africa-Hypothese Pan-Hom-Abspaltung Primatenevolution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allentoft, M. E., Collins, M., Harker, D., Haile, JOskam, C. L., Hale, M. L., Campos P. F., Samaniego, J. A., Gilbert, M. T., Willerslev, E., Zhang, G., Scofield, R. P., Holdaway, R. N., Bunce, M. (2012). The half-life of DNA in bone: measuring decay kinetics in 158 dated fossils. Proceedings of the Royal Society B: Biological Sciences, 279(1748), 4724–33.Google Scholar
  2. Bickerton, D. (2009). Adam’s tongue. Hill and Wang.Google Scholar
  3. Bower, B. (2006). Hybrid-driven evolution: Genomes show complexity of human-chimp split. Science News, 169(20), 308–9.Google Scholar
  4. Brown, P., Sutikna, T., Morwood, M. J., Soejono, R. P., & Jatmiko, W. (2004). A new small-bodied hominid from the late Pleistocene of Flores, Indonesia. Nature, 441, 624–28.Google Scholar
  5. Callaway, E. (2017). Controversial study claims humans reached Americas 100,000 years earlier than thought. Nature, doi: https://doi.org/10.1038/nature.2017.21886.
  6. Cann, R. L., Stoneking, M., & Wilson, A. C. (1987). Mitochondrial DNA and human evolution. Nature, 325(6099), 31–6.Google Scholar
  7. Chomsky, N. (1956). Three models for the description of language. Information Theory, IRE Trans, 2(3), 113–24.Google Scholar
  8. Chomsky, N. (1995). The minimalist program. Cambridge, MA: MIT Press.Google Scholar
  9. Darwin, C. (1871). The descent of man, and selection in relation to sex. London: John Murray.Google Scholar
  10. Falk, D. (2007). Evolution of the primate brain. In W. Henke & I. Tattersall (eds.), Handbook of palaeoanthropology, vol. 2: Primate evolution and human origins. Springer Press, 1133–62.Google Scholar
  11. Falk, D., Hildebolt, C., Smith, K., Morwood, M. J., Sutikna, T., Brown, P., Jatmiko, Saptomo, E. W., Brunsden, B., & Prior, F. (2005). The brain of LB, Homo floresiensis. Science, 308(5719), 242–5.Google Scholar
  12. Fuss, J., Spassov, N., Begun, D. R., & Bohme, M. (2017). Potential hominin affinities of Graecopithecus from the Late Miocene of Europe. PLOS,  https://doi.org/10.1371/journal.pone.0177127.
  13. Geary, D. (2002). Principles of evolutionary educational psychology. Learning and Individual Differences, 12, 317–45.Google Scholar
  14. Greenberg, J. (1963). Universals of language. Cambridge: MIT Press.Google Scholar
  15. Green, R. E., et al. (2010). A Draft Sequence of the Neandertal Genome. Science, 328 (5979), 710–722.Google Scholar
  16. Haeckel, E. (1868). The history of creation. London: Kegan Paul, Trench & Co.Google Scholar
  17. Haile-Selassie, Y., Saylor, B. Z., Deino, A., Levin, N. E., Alene, M., & Latimer, B. M. (2012). Anew hominin foot from Ethiopia shows multiple Pliocene bipedal adaptations. Nature, 483, 565–569.Google Scholar
  18. Hammer, M. F., Karafet, T., Rasanayagam, A., Wood, E. T., Altheide, T. K., Jenkins, T., Griffiths, R. C., Templeton, A. R., & Zegura, S. L. (1998). Out of Africa and back again: Nested cladistic analysis of human y chromosome variation. Molecular Biology and Evolution, 15(4), 427–41.Google Scholar
  19. Holen, S. R., Deméré, T. A., Fisher, D. C., Fullagar, R., Paces, J. B., Jefferson, G. T., Beeton, J. M., Cerutti, R. A., Rountrey, A. N., Vescera, L., & Holen, K. A. (2017). A 130,000-year-old archaeological site in southern California, Nature, 544. 479–85. doi: https://doi.org/10.1038/nature22065.
  20. Holloway, R. L., Brown, P., Schoenemann, P. T., & Monge, J. (2006). The brain endocast of Homo floresiensis: microcephaly and other issues. American Journal of Physical Anthropology, 129 (supplement 105).Google Scholar
  21. Hovers, E. (2017). Unexpectedly early signs of Americans. Nature, 544, 420–21.Google Scholar
  22. Johanson, D., & Edey, M. (1981). Lucy, the beginnings of humankind. St Albans: Granada.Google Scholar
  23. Lenneberg, E. H. (1967). Biological foundations of language. New York, NY: Wiley.Google Scholar
  24. Mayr, E. (1942). Systematics and the Origin of Species. New York, NY: Columbia University Press.Google Scholar
  25. McBrearty, S., & Jablonski, N. G. (2005). First fossil chimpanzee. Nature, 437, 105–8.Google Scholar
  26. Reich, D., et al. (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468(7327), 1053–1060.Google Scholar
  27. Reich, D. et al. (2011). Denisova Admixture and the First Modern Human Dispersals into Southeast Asia and Oceania. American Journal of Human Genetics, 89(4), 516–28.Google Scholar
  28. Sagan, C. (1979). Broca’s Brain. New York: Random House.Google Scholar
  29. Schleicher, A. (1861). Compendium der vergleichenden Grammatik der indogermanischen Sprachen [German]. Weimar: H. Böhlau. [English version: Schleicher (1874). A Compendium of the comparative grammar of the Indo-European, Sanskrit, Greek, and Latin languages (translated an abridged version from the 3rd German edition by Herbert Bendall). London: Trübner and Co.]Google Scholar
  30. Shen, G., Gao, X., Gao, B., & Granger, D. (2009). Age of Zhoukoudian Homo erectus determined with (26) Al/(10)Be burial dating. Nature, 458(7235), 198–200.Google Scholar
  31. Trinkaus, E. (2007). European early modern humans and the fate of the Neandertals. Proceedings National Academy of Science, 104(18), 7367–72.Google Scholar
  32. Trombetti, A. (1905). L’unit d’origine del linguaggio [Italian]. Bologna: Luigi Beltrami.Google Scholar
  33. Weaver, T. D., & Roseman, C. C. (2008). New developments in the genetic evidence for modern human origins. Evolutionary Anthropology: Issues, News, and Reviews, 17(1), 69–80.Google Scholar
  34. Wolpoff, M. H., Hawks, J., & Caspari, R. (2000). Multiregional, not multiple origins. American Journal of Physiological Anthropology, 112(1), 129–36.Google Scholar
  35. Wolpoff, M. H., Hawks, J., David, W., Frayer, D. W., & Hunley, K. (2001). Modern Human Ancestry at the Peripheries: A Test of the Replacement Theory. Science, 291(5502),293–297..Google Scholar
  36. Wood, B. (2002). Hominid revelations from Chad. Nature, 418, 133–5.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.School of MedicineUniversity of California, San DiegoSan Diego, La JollaUSA

Personalised recommendations