Zusammenfassung
Wie die Muttersprache erworben wird und wie Kinder und Erwachsene mehr als eine Sprache erwerben, hängt vom Zusammenspiel zwischen neurogenetischen und sozialen Prozessen ab. Neuronale Schaltkreise werden bereits während der perinatalen Periode gebildet. Ein epigenetisches Modell unterscheidet zwischen einer „erfahrungserwartenden“ und „erfahrungsabhängigen“ Phase, wobei während der letztgenannten Phase die Parameter für sensitive Perioden festgelegt werden. Ein genetisch vorherbestimmtes Programm der neuronalen Verschaltung unterstützt das neuronale Netzwerk, aber verhindert keine Neuroplastizität während des gesamten Lebenszyklus. Entsprechend können wir jederzeit eine neue Sprache lernen, obwohl sensitive Perioden, die vermutlich nicht sprachspezifisch sind, den Lernprozess erleichtern und optimieren. Die Fähigkeit, mehr als eine Sprache zu sprechen, ist aus neurologischer Sicht von Vorteil, da es die Entwicklung der weißen Substanz und Neuroplastizität fördert, einschließlich des „Code-Switchens“. Aus methodologischer Sicht erscheinen Einzelfallstudien angemessener zu sein als Gruppenstudien, um den zahlreichen subjektiven Variablen, die beim Zweitspracherwerb eine Rolle spielen, Rechnung zu tragen. Diese Variablen beziehen sich u. a. auf: Alter beim Spracherwerb, phonologische, grammatische und semantische Ähnlichkeiten zwischen Zweitsprache und Muttersprache, Grad der Sprechflüssigkeit und Gebrauchshäufigkeit. Bildgebende Daten weisen darauf hin, dass eine sehr gute Sprachkompetenz in der Zweitsprache die frontotemporalen Schaltkreise aktivieren, die für die Muttersprache vorgesehen sind; eine weniger gute Sprachkompetenz in der Zweitsprache aktiviert zusätzlich präfrontale Areale, die gewöhnlich nicht zum neuronalen Netzwerk der Muttersprache gehören.
Stichwörter
Alter beim Spracherwerb Bilingualismus Code-Switching Kritische Periode Multilingualismus Neuroplastizität Perinatale Entwicklung Sensitive Periode Spracherwerb Sprachkompetenz Sprechflüssigkeit ZweitsprachePreview
Unable to display preview. Download preview PDF.
Literatur
- Amunts, K., Schleicher, A., & Zilles, K. (2004). Outstanding language competence and cytoarchitecture in Broca’s speech region. Brain and Language, 89(2), 346–353.Google Scholar
- Basser, P. J., Pajevic, S., Pierpaoli, C., Duda, J., & Aldroubi, A. (2000). In vivo fiber tractography using DT-MRI data. Magnetic Resonance in Medicine, 44(4), 625–632.Google Scholar
- Bavelier, D., Corina, D., Jezzard, P., Clark, V., Karni, A., Lalwani, A., & et al.(1998). Hemispheric specialization for English and ASL: Left invariance-right variability. Neuroreport, 9(7), 1537–1542.Google Scholar
- Chee, M. W. L., Tan, E. W. L., & Thiel, T. (1999a). Mandarin and English single word processing studied with functional magnetic resonance imaging. Journal of Neuroscience, 19(8), 3050–3056.Google Scholar
- Chee, M. W., Caplan, D., Soon, C. S., Sriram, N., Tan, E. W., Thiel, T., & Weekes, B. (1999b). Processing of visually presented sentences in Mandarin and English studied with fMRI. Neuron, 23(1), 127–137.Google Scholar
- Consonni, M., Cafiero, R., Marin, D., Tettamanti, M., Iadanza, A., Fabbro, F., & Perani, D. (2013). Neural convergence for language comprehension and grammatical class production in highly proficient bilinguals is independent of age of acquisition. Cortex, 49(5), 1252–1258.Google Scholar
- DeCasper, A. J., & Fifer, W. P. (1980). Of human bonding: Newborns prefer their mothers’ voices. Science, 208(4448), 1174–1176.Google Scholar
- DeCasper, A. J., & Prescott, P. A. (1984). Human newborns’ perception of male voices: Preference, discrimination, and reinforcing value. Developmental Psychobiology, 17(5), 481–491.Google Scholar
- Dehaene, S., Dupoux, E., Mehler, J., Cohen, L., Paulesu, E., & et al. (1997). Anatomical variability in the cortical representation of first and second language. Neuroreport, 8(17), 3809–3815.Google Scholar
- Fabbro, F. (2001). The bilingual brain: Bilingual aphasia. Brain and Language, 79(2), 201–210.Google Scholar
- Greenough, W. T., Black, J. E., & Wallace, C. S. (1987). Experience and brain development. Child Development, 58(3), 539–559.Google Scholar
- Hahne, A., & Friederici, A. D. (2001). Processing a second language: Late learners’ comprehension mechanisms as revealed by event-related brain potentials. Bilingualism: Language and Cognition, 4(2), 123–141.Google Scholar
- Hahne, A., Mueller, J. L., & Clahsen, H. (2006). Morphological processing in a second language: Behavioral and event-related brain potential evidence for storage and decomposition. Journal of Cognitive Neuroscience, 18(1), 121–134.Google Scholar
- Hasegawa, M., Carpenter, P. A., & Just, M. A. (2002). An fMRI study of bilingual sentence comprehension and workload. NeuroImage, 15(3), 647–660.Google Scholar
- Heiss, W. D., Thiel, A., Kessler, J., & Herholz, K. (2003). Disturbance and recovery of language function: Correlates in PET activation studies. NeuroImage, 20, 42–49.Google Scholar
- Hull, R., & Vaid, J. (2006). Laterality and language experience. Laterality, 11(5), 436–464.Google Scholar
- Josse, G., Seghier, M. L., Kherif, F., & Price, C. J. (2008). Explaining function with anatomy: Language lateralization and corpus callosum size. Journal of Neuroscience, 28(52), 14132–14139.Google Scholar
- Kim, K. H. S., Relkin, N. R., Lee, K.-M., & Hirsch, J. (1997). Distinct cortical areas associated with native and second languages. Nature, 388(6638), 171–174.Google Scholar
- Kisilevsky, B. S., Hains, S. M. J., Brown, C. A., Lee, C. T., Cowperthwaite, B., Stutzman, S. S., Swansburg, M. L., Lee, K., Xie, X., Huang, H., Ye, H. H., Zhang, K., & Wang, Z. (2009). Fetal sensitivity to properties of maternal speech and language. Infant Behavior and Development, 32(1), 59–71.Google Scholar
- Kisilevsky, B. S., Hains, S. M. J., Lee,K., Xie, X., Huang, H., Ye, H. H., Zhang, K., & Wang, Z. (2003). Effects of experience on fetal voice recognition. Psychological Science, 14(3), 220–224.Google Scholar
- Kubota, M., Ferrari, P., & Roberts, T. P. L. (2003). Magnetoencephalography detection of early syntactic processing in humans: Comparison between L1 speakers and L2 learners of English. Neuroscience Letters, 353(2), 107–110.Google Scholar
- Kubota, M., Ferrari, P., & Roberts, T. P. L. (2004). Human neuronal encoding of English syntactic violations as revealed by both L1 and L2 speakers. Neuroscience Letters, 368(2), 235–240.Google Scholar
- Kubota, M., Inouchi, M., Ferrari, P., & Roberts, T. P. L. (2005). Human magnetoencephalographic evidence of early syntactic responses to c-selection violations of English infinitives and gerunds by L1 and L2 speakers. Neuroscience Letters, 384(3), 300–304.Google Scholar
- Lenneberg, E. H. (1967). Biological foundations of language. New York: Wiley.Google Scholar
- Mariën, P., Abutalebi, J., Engelborghs, S., & De Deyn, P. P. (2005). Pathophysiology of language switching and mixing in an early bilingual child with subcortical aphasia. Neurocase, 11(6), 385–398.Google Scholar
- Mohades, S. G., Struys, E., Van Schuerbeek, P., Mondt, K., Van De Craen, P., & Luypaert, R. (2012). DTI reveals structural differences in white matter tracts between bilingual and monolingual children. Brain Research, 1435, 72–80.Google Scholar
- Moon, C., Cooper, R. P., & Fifer, W. P. (1993). Two-day-olds prefer their native language. Infant Behavior and Development, 16(4), 495–500.Google Scholar
- Mueller, J. L. (2005). Electrophysiological correlates of second language processing. Second Language Research, 21(2), 152–174.Google Scholar
- Musso, M., Moro, A., Glauche, V., Rijntjes, M., Reichenbach, J., Büchel, C., & Weiller, C. (2003). Broca’s area and the language instinct. Nature Neuroscience, 6(7), 774–781.Google Scholar
- Paradis, M. (1998). Language and communication in multilinguals. In B. Stemmer & H. A. Whitaker (eds.), Handbook of Neurolinguistics. San Diego: Academic Press.Google Scholar
- Paradis, M., Libben, G., & Hummel, K. (1987). The bilingual aphasia test. Hillsdale: Larence Erlbaum.Google Scholar
- Perani, D., Dehaene, S., Grassi, F., Cohen, L., Cappa, S. F., Dupoux, E., Fazio, F., & Mehler, J. (1996). Brain processing of native and foreign languages. Neuroreport, 7(15–17), 2439–2444.Google Scholar
- Perani, D., Saccuman, M. C., Scifo, P., Anwander, A., Spada, D., Baldoli, C., Poloniato, A., Lohmann, G., & Friederici, A. D. (2011). Neural language networks at birth. Proceedings of the National Academy of Science, 108(45), 18566.Google Scholar
- Pinker, S. (1994). The language instinct. New York: Harper Perennial.Google Scholar
- Price, C. I., Green, D. W., & von Studnitz, R. (1999). A functional imaging study of translation and language switching. Brain, 122, 2221–2235.Google Scholar
- Rossi, S., Gugler, M. F., Friederici, A. D., & Hahne, A. (2006). The impact of proficiency on syntactic second-language processing of German and Italian: Evidence from event-related potentials. Journal of Cognitive Neuroscience, 18(12), 2030–2048.Google Scholar
- Rymer, A. (1994). Genie: A scientific tragedy. New York: Harper Perennial.Google Scholar
- Sakai, K. L., Miura, K., Narafu, N., & Muraishi, Y. (2004). Correlated functional changes of the prefrontal cortex in twins induced by classroom education of second language. Cereb Cortex, 14, 1233–1239.Google Scholar
- Sanders, L. D., & Neville, H. J. (2003). An ERP study of continuous speech processing. Cognitive Brain Research, 15(3), 214–227.Google Scholar
- Saur, D., Baumgaertner, A., Moehring, A., Büchel, C., Bonnesen, M., Rose, M., Musso, M., & Meisel, J. M. (2009). Word order processing in the bilingual brain. Neuropsychologia, 47(1), 158–168.Google Scholar
- Schmidt, G. L., & Roberts, T. P. L. (2009). Second language research using magnetoencephalography: A review. Second Language Research, 25(1), 135–166.Google Scholar
- Suh, S., Yoon, H. W., Lee, S., Chung, J.-Y., Cho, Z.-H., & Park, H. (2007). Effects of syntactic complexity in L1 and L2; An fMRI study of Korean–English bilinguals. Brain Research, 1136, 178–189.Google Scholar
- Tettamanti, M., Alkadhi, H., Moro, A., Perani, D., Kollias, S., & Weniger, D. (2002). Neural correlates for the acquisition of natural language syntax. NeuroImage, 17, 700–709.Google Scholar
- Weber-Fox, C. M., & Neville, H. J. (1996). Maturational Constraints on Functional Specializations for Language Processing: ERP and Behavioral Evidence in Bilingual Speakers. Journal of Cognitive Neuroscience, 8(3), 231–256.Google Scholar
- Werker, J. F., & Tees, R. C. (1984). Cross-language speech perception: Evidence for perceptual reorganization during the first year of life. Infant Behavior and Development, 7(1), 49–63.Google Scholar