Advertisement

Atypische Sprache

  • Dieter HillertEmail author
Chapter
  • 1.9k Downloads

Zusammenfassung

Drei exemplarische neuropsychologische Störungen verdeutlichen, wie die kognitiven Funktionen des menschlichen Sprachsystems gestört werden können: Aphasie, Alzheimer-Krankheit und Autismus-Spektrum-Störung. Das Sprachnetzwerk wird von allen drei Störungen auf eine unterschiedliche Art und Weise beeinträchtigt. Die durch einen Schlaganfall verursachten fokalen Läsionen innerhalb des linken frontotemporalen Schaltkreises sind gewöhnlich die Gründe dafür, dass spezifische Komponenten des Sprachnetzwerks ausfallen. Allerdings ermöglicht die Neuroplastizität, dass zum Teil aphasische Störungen erfolgreich kompensiert werden können. Die Prüfung des aphasischen Genesungsprozesses verdeutlicht, dass sich das Sprachnetzwerk auch unter dem Einfluss der intakten rechtshemisphärischen Funktionen reorganisieren kann. Im Fall der Alzheimer-Krankheit beeinflussen bestimmte Gedächtnisfunktionsstörungen das Sprachnetzwerk. Es handelt sich um eine fortschreitende Krankheit, von der selektiv bestimmte Sprachkomponenten stärker beeinträchtigt werden als andere. Die Autismus-Spektrum-Störung wird offenbar durch eine atypische Entwicklung der neuronalen Verschaltung in Bezug auf Konnektivität und „Pruning“ verursacht.

Stichwörter

Alzheimer-Krankheit Amyloide Plaques Aphasie APOE 4 Autismus-Spektrum- Störung Bildhafte Sprache Konnektivität Leichte Kognitive Beeinträchtigung Neurofibrilläres Bündel Pragmatik Pruning Soziale Kognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Alexander, M. P., Naeser, M. A., & Palumbo, C. (1990). Broca’s area aphasias: Aphasia after lesions including the frontal operculum. Neurology, 40, 353–62.Google Scholar
  2. Almor, A., Kempler, D., MacDonald, M. C., Andersen, E. S., & Tyler, L. K. (1999). Why do Alzheimer patients have difficulty with pronouns? Working memory, semantics, and reference in comprehension and production in Alzheimer’s disease. Brain and Language, 67(3), 202–27.Google Scholar
  3. Appell, J., Kertesz, A., & Fisman, M. (1982). A study of language functioning in Alzheimer patients. Brain and Language, 17(1), 73–91.Google Scholar
  4. Balota, D. A., & Duchek, J. M. 1991. Semantic priming effects, lexical repetition effects, and contextual disambiguation effects in healthy aged individuals and individuals with senile dementia of the Alzheimer type. Brain and Language, 40, 181–201.Google Scholar
  5. Baron-Cohen, S. (1997). Hey! It was just a joke! Understanding propositions and propositional attitudes by normally developing children and children with autism. Israel Journal of Psychiatry and Related Sciences, 34(3), 174–8.Google Scholar
  6. Baron-Cohen, S., Spitz, A., & Cross, P. (1993). Can children with autism recognize surprise? Cognition and Emotion, 7, 507–16.Google Scholar
  7. Bayles, K. A. (1982). Language function in senile dementia. Brain and Language, 16(2), 265–80.Google Scholar
  8. Bayles, K. A., & Tomoeda, C. K. (1983). Confrontation naming impairment in dementia. Brain and Language, 19(1), 98–114.Google Scholar
  9. Bayles, K. A., Tomoeda, C. K., & Trosset, M. W. (1990). Naming and categorical knowledge in Alzheimer’s disease: the process of semantic memory deterioration. Brain and Language, 39(4), 498–510.Google Scholar
  10. Baynes, K., Tramo, M. J., & Gazzaniga, M. S. (1992). Reading with a limited lexicon in the right hemisphere of a callosotomy patient. Neuropsychologia, 30(2), 187–200.Google Scholar
  11. Bickel, C., Pantel, J., Eysenbach, K., & Schröder, J. (2000). Syntactic comprehension deficits in Alzheimer’s disease. Brain and Language, 71(3), 432–48.Google Scholar
  12. Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17(1), 353–62.Google Scholar
  13. Blumstein, S. E., Milberg, W., & Shrier, R. (1982). Semantic processing in aphasia: evidence from an auditory lexical decision task. Brain and Language, 17(2), 301–315.Google Scholar
  14. Bockheimer, S. (2002). Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–88.Google Scholar
  15. Bottini, G., Corcoran, R., Sterzi, R., Paulesu, E., Schenone, P., Scarpa, P., Frackowiak, R. S., & Frith, C. D. (1994). The role of the right hemisphere in the interpretation of figurative aspects of language. A positron emission tomography activation study. Brain, 117(6), 1241–53.Google Scholar
  16. Bradley, D. C. (1978). Computational distinctions of vocabulary type. Unpublished doctoral dissertation. Cambridge, MA: MIT Press.Google Scholar
  17. Broca, P. (1861). Remarques sur le siège de la faculté du langage articulé suivies d’une observation d’aphèmie (perte de la parole) [French]. Bulletin de la Société d’Anatomie de Paris, 330–57.Google Scholar
  18. Butters, N., Granholm, E., Salmon, D. P., Grant, I., & Wolfe, J. (1987). Episodic and semantic memory: a comparison of amnesic and demented patients. Journal of Clinical and Experimental Neuropsychology, 9(5), 479–97.Google Scholar
  19. Butterworth, G., & Jarrett, N. (1991). What minds have in common is space: Spatial mechanisms serving joint visual attention in infancy. British Journal of Developmental Psychology, 9(1), 55–72.Google Scholar
  20. Caplan, D. (1987). Neurolinguistics and linguistic aphasiology: an introduction. Cambridge: Cambridge University Press.Google Scholar
  21. Caplan, D., & Hildebrandt, N. (1988). Disorders of syntactic comprehension. Cambridge, MA: MIT Press.Google Scholar
  22. Caramazza, A., & Zurif, E. B. (1976). Dissociation of algorithmic and heuristic processes in language comprehension: evidence from aphasia. Brain and Language, 3(4), 572–82.Google Scholar
  23. Caramazza, A., Berndt, R. S., & Brownell, H. H. (1982). The semantic deficit hypothesis: perceptual parsing and object classification by aphasic patients. Brain and Language, 15(1), 161–89.Google Scholar
  24. Castelli, F. (2005). Understanding emotions from standardized facial expressions in autism and normal development. Autism: The International Journal of Research and Practice, 9(4), 428–449.Google Scholar
  25. Chertkow, H., & Bub, D. (1990). Semantic memory loss in dementia of Alzheimer’s type. What do various measures measure? Brain: A Journal of Neurology, 113 (2), 397–417.Google Scholar
  26. Chertkow, H., Bub, D., & Seidenberg, M. 1989. Priming and semantic memory loss in Alzheimer’s disease. Brain and Language, 36, 420–46.Google Scholar
  27. Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Jr, J. Rimmler, B., Locke, P. A., Conneally, P. M., Schmader, K. E., Small, G. W., Roses, A. D., Haines, J. L., & Pericak-Vance, M. A. (1994). Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genetics, 7(2), 180–84.Google Scholar
  28. Cornelissen, K., Laine, M., Tarkiainen, A., Järvensivu, T., Martin, N., & Salmelin, R. (2003a). Adult brain plasticity elicited by anomia treatment. Journal of Cognitive Neuroscience, 15(3), 444–61.Google Scholar
  29. Courchesne, E., Karns, C. M., Davis, H. R., Ziccar di, R., Carper, R. A., Tigue, Z. D., Chisum, H. J., Moses, P., Pierce, K., Lord, C., Lincoln, A. J., Pizzo, S., Schreibman, L., Haas, R. H., Akshoomoff, N. A., & Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 57(2), 245–254.Google Scholar
  30. Courchesne, E., Mouton, PR, Calhoun, ME, Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., Barnes, C. C., & Pierce, K. (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306(18), 2001–10.Google Scholar
  31. Cross, K., Smith, E. E., & Grossman, M. (2008). Knowledge of natural kinds in semantic dementia and Alzheimer’s disease. Brain and Language, 105(1), 32–40.Google Scholar
  32. Cummings, J. L., Benson, F., Hill, M. A., & Read, S. (1985). Aphasia in dementia of the Alzheimer type. Neurology, 35(3), 394–97.Google Scholar
  33. Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D., & Damasio, A. R. (1996). A neural basis for lexical retrieval. Nature, 380(6574), 499–505.Google Scholar
  34. Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., Iacoboni, M., & (2006). Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30.Google Scholar
  35. De Renzi, E., & Vignolo, L. A. (1962). The token test: A sensitive test to detect receptive disturbances in aphasics. Brain, 85(4), 665–78.Google Scholar
  36. Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159–61.Google Scholar
  37. Ecker, C., Ronan, L., Feng, Y., Daly, E., Murphy, C., Ginestet, C. E., Brammer, M., Fletcher, P. C., Bullmore, E. T., Suckling, J., Baron-Cohen, S., Williams, S., Loth, E.; MRC AIMS Consortium, Murphy, D. G. (2013). Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder. Proceedings of the National Academy of Sciences, 110(32), 13222–7.Google Scholar
  38. Emery, O. B., & Breslau, L. D. (1989). Language deficits in depression: comparisons with SDAT and normal aging. Journal of Gerontology, 44(3), M85–92.Google Scholar
  39. Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
  40. Fombonne, E., Rogé, B., Claverie, J., Courty, S., & Frémolle, J. (1999). Microcephaly and macrocephaly in autism. Journal of Autism and Developmental Disorders, 29(2), 113–19.Google Scholar
  41. Forster, K. I. (1979). Levels of processing and the structure of the language processor. In W. E. Cooper & E. Walker (eds.), Sentence processing: Psycholinguistics studies presented to Merrill Garret. Hillsdale, NJ: Larence Erlbaum.Google Scholar
  42. Frackowiak, R. S. (2001). New functional cerebral cartography: studies of plasticity of the human brain. Bulletin de l’Académie nationale de médecine, 185(4), 707–24.Google Scholar
  43. Frith, C. (2003). What do imaging studies tell us about the neural basis of autism? Novartis Foundation Symposium, 251, 149–66.Google Scholar
  44. Gainotti, G., Caltagirone, C., Miceli, G., & Masullo, C. (1981). Selective semantic-lexical impairment of language comprehension in right-brain-damaged patients. Brain and Language, 13(2), 201–11.Google Scholar
  45. Gallese, V. (2007). Before and below “theory of mind”: embodied simulation and the neural correlates of social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 659–69.Google Scholar
  46. Gallese, V. (2008). Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social Neuroscience, 3(3–4), 317–33.Google Scholar
  47. Gazzaniga, M. S. (1995). Principles of human brain organization derived from split-brain studies. Neuron, 14(2), 217–28.Google Scholar
  48. Gazzaniga, M. S., & Sperry, R. W. (1967). Language after section of the cerebral commissures. Brain: A Journal of Neurology, 90(1), 131–48.Google Scholar
  49. Golob, E. J., Johnson, J. K., & Starr, A. (2002). Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clinical Neurophysiology, 113(1), 151–61.Google Scholar
  50. Goodglass, H., & E. Baker (1976): Semantic field, naming, and auditory comprehension in aphasia. Brain and Language, 3, 359–74.Google Scholar
  51. Goodglass, H. (1976). Agrammatism. In H. Whitaker & H. A. Whitaker (eds.), Studies in neurolinguistics, vol. 1. New York: Academic Press.Google Scholar
  52. Goodglass, H., & Berko, J. (1960). Agrammatism and inflectional morphology in English. Journal of Speech and Hearing Research, 3, 257–67.Google Scholar
  53. Gordon, B., & Caramazza, A. (1983). Closed- and open-class lexical access in agrammatic and fluent aphasics. Brain and Language, 19(2), 335–45.Google Scholar
  54. Grober, E., Buschke, H., Kawas, C., & Fuld, P. (1985). Impaired ranking of semantic attributes in dementia. Brain and Language, 26(2), 276–86.Google Scholar
  55. Grossman, M., & Rhee, J. (2001). Cognitive resources during sentence processing in Alzheimer’s disease. Neuropsychologia, 39(13), 1419–31.Google Scholar
  56. Grossman, M., & White-Devine, T. (1998). Sentence comprehension in Alzheimer’s disease. Brain and Language, 62(2), 186–201.Google Scholar
  57. Grossman, M., Koenig, P., DeVita, C., Glosser, G., Moore, P., Gee., J, Detre, J., & Alsop, D. (2003). Neural basis for verb processing in Alzheimer’s disease: an fMRI study. Neuropsychology, 17(4), 658–74.Google Scholar
  58. Grossman, M., Mickanin, J., Onishi, K., & Hughes, E. (1995). An aspect of sentence processing in Alzheimer’s disease: quantifier-noun agreement. Neurology, 45(1), 85–91.Google Scholar
  59. Grossman, M., Mickanin, J., Robinson, K. M., & D’Esposito, M. (1996). Anomaly judgments of subject-predicate relations in Alzheimer’s disease. Brain and Language, 54(2), 216–32.Google Scholar
  60. Grossman, M., Robinson, K., Biassou, N., White-Devine, T., & D’Esposito, M. (1998). Semantic memory in Alzheimer’s disease: representativeness, ontologic category, and material. Neuropsychology, 12(1), 34–42.Google Scholar
  61. Grossman, M., Peelle, J. E., Smith, E. E., McMillan, C. T., Cook, P., Powers, J., Dreyfuss, M., Bonner, M. F., Richmond, L., Boller, A., Camp, E., & Burkholder, L. (2013). Category-specific semantic memory: converging evidence from bold fMRI and Alzheimer’s disease. Neuroimage, 68, 263–74.Google Scholar
  62. Hamilton, A. F. de C. (2013). Reflecting on the mirror neuron system in autism: A systematic review of current theories. Developmental Cognitive Neuroscience, 3, 91–105.Google Scholar
  63. Happé, F. G. (1993). Communicative competence and theory of mind in autism: A test of relevance theory. Cognition, 48(2), 101–19.Google Scholar
  64. Happé, F. G. (1994). An advanced test of theory of mind: Understanding of story characters’ thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. Journal of Autism and Developmental Disorders, 24(2), 129–54.Google Scholar
  65. Happé, F. G. (1995). The role of age and verbal ability in the theory of mind task performance of subjects with autism. Child Development, 66(3), 843–55.Google Scholar
  66. Heiss, W. D., Kessler, J., Thiel, A., Ghaemi, M., Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Annals of Neurology, 45(4), 430–8.Google Scholar
  67. Hier, D. B., Hagenlocker, K., & Shindler, A. G. (1985). Language disintegration in dementia: effects of etiology and severity. Brain and Language, 25(1), 117–33.Google Scholar
  68. Hillert, D. (1990). Sprachprozesse und Wissensstrukturen [German]. Opladen: Westdeutscher Press.Google Scholar
  69. Hillert, D. (1999). On Processing Lexical Concepts in Aphasia and Alzheimer’s disease. Some (Re)considerations. Brain and Language 69, 95–118.Google Scholar
  70. Hillert, D. G. (2004). Spared access to idiomatic and literal meanings: A single-case approach. Brain and Language, 89(1), 207–15.Google Scholar
  71. Hillis, A. E. (2002). Does the right make it right? Questions about recovery of language after stroke. Annals of Neurology, 51(5), 537–38.Google Scholar
  72. Hodges, J. R., Salmon, D. P., & Butters, N. (1992). Semantic memory impairment in Alzheimer’s disease: failure of access or degraded knowledge? Neuropsychologia, 30(4), 301–14.Google Scholar
  73. Huff, F. J., Corkin, S., & Growden, J. H. (1986). Semantic impairment and anomia in Alzheimer’s disease. Brain and Language, 28, 235–49.Google Scholar
  74. Iacoboni, M. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526–28.Google Scholar
  75. Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews. Neuroscience, 12, 942–51.Google Scholar
  76. Ingram, J. C. L. (2007). Neurolinguistics: An introduction to spoken language processing and its disorders. Cambridge University Press.Google Scholar
  77. Jucker, M., & Walker, L. C. (2011). Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Annals of Neurology, 70(4), 532–40.Google Scholar
  78. Katz, W. F. (1988). An investigation of lexical ambiguity in Broca’s aphasics using an auditory lexical priming technique. Neuropsychologia, 26(5), 747–752.Google Scholar
  79. Kean, M-L. (1977). The Linguistic Description of Aphasic Syndromes. Cognition, 5, 9–46.Google Scholar
  80. Kemper, S., LaBarge, E., Ferraro, F. R., Cheung, H., Cheung, H., & Storandt, M. (1993). On the preservation of syntax in Alzheimer’s disease. Evidence from written sentences. Archives of Neurology, 50(1), 81–6.Google Scholar
  81. Kempler, D., Almor, A. Tyler, L. K., Andersen, E. S., MacDonald, M. C. (1998). Sentence comprehension deficits in Alzheimer’s disease: a comparison of off-line vs. on-line sentence processing. Brain and Language, 64(3), 297–316.Google Scholar
  82. Kempler, D., Van Lancker D., & Read, S. (1988). Proverb and idiom comprehension in Alzheimer disease. Alzheimer Disease and Associated Disorders, 2(1), 38–49.Google Scholar
  83. Kertesz, A., Appell, J., & Fisman, M. (1986). The dissolution of language in Alzheimer’s disease. The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques, 13(4), 415–18.Google Scholar
  84. Kertesz, A., Lau, W. K., Polk, M. (1993). The structural determinants of recovery in Wernicke’s aphasia. Brain and Language, 44, 153–64.Google Scholar
  85. Kolk, H. H., & Blomert, L. (1985). On the Bradley hypothesis concerning agrammatism: the nonword-interference effect. Brain and Language, 26(1), 94–105.Google Scholar
  86. Kussmaul, A. (1877). Die Störungen der Sprache. Leipzig. [In German]Google Scholar
  87. Kutas, M., & Van Petten, C. 1994. Psycholingusistics electrified: Event-related brain potential investigations. In M. Gernsbacher (ed.), Handbook of psycholinguistics. New York: Academic Press, pp. 83–143.Google Scholar
  88. Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., & Folstein, S. E. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 36(2), 282–90.Google Scholar
  89. Leslie, A. M., & Frith, U. (1988). Autistic children’s understanding of seeing, knowing and believing. British Journal of Developmental Psychology, 6(4), 315–24.Google Scholar
  90. Lesser, R. (1990). Linguistic investigations of aphasia. London; Jersey City: Whurr Publishers.Google Scholar
  91. Lichtheim, L. (1884). Ueber Aphasie [German]. Deutsches Archiv Für Klinische Medicin, 36, 204–68.Google Scholar
  92. Lopez, O. L., Jagust, W. J., DeKosky, S. T., Becker, J. T., Fitzpatrick, A., Dulberg, C., Breitner, J., Lyketsos, C., Jones, B., Kawas, C., Carlson, M., & Kuller, L. H. (2003). Prevalence and classification of mild cognitive impairment in the cardiovascular health study cognition Study, Part 1. Archives of Neurology, 60, 1385–89.Google Scholar
  93. Lukatela, K., Crain, S., & Shankweiler, D. (1988). Sensitivity to inflectional morphology in agrammatism: Investigation of a highly inflected language. Brain and Language, 33, 1–15.Google Scholar
  94. Martin, A., & Fedio, P. (1983). Word production and comprehension in Alzheimer’s disease: the breakdown of semantic knowledge. Brain and Language, 19(1), 124–41.Google Scholar
  95. Martin, R. C. (1987). Articulatory and phonological deficits in short-term memory and their relation to syntactic processing. Brain and Language, 32(1), 159–92.Google Scholar
  96. Mazumdar, S., King, M., Liu, K.-Y., Zerubavel, N., & Bearman, P. (2010). The spatial structure of autism in California, 1993–2001. Health & Place, 16(3), 539–546.Google Scholar
  97. McClelland, J. L. (1987). The case for interactionism in language processing.In M. Coltheart (ed.), Attention & performance XII: The psychology of reading. London: Erlbaum, pp. 1–36.Google Scholar
  98. Meinzer, M., Flaisch, T., Breitenstein, C., Wienbruch, C., Elbert, T., & Rockstroh, B. (2008). Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. NeuroImage, 39(4), 2038–46.Google Scholar
  99. Mesulam, M. (1994). Neurocognitive networks and selectively distributed processing. Revue Neurologique, 150(8–9), 564–69.Google Scholar
  100. Miceli, G., Mazzucchi, A., Menn, L., & Goodglass, H. (1983). Contrasting cases of Italian agrammatic aphasia without comprehension disorder. Brain and Language, 19(1), 65–97.Google Scholar
  101. Milberg, W., & Blumstein, S. E. (1981a). Lexical decision and aphasia: evidence for semantic processing. Brain and Language, 14(2), 371–85.Google Scholar
  102. Milberg, W., Blumstein, S. E., & Dworetzky, B. (1987a). Processing of lexical ambiguities in aphasia. Brain and Language, 31(1), 138–50.Google Scholar
  103. Mohr, J. P. (1976). Broca’s area and Broca’s aphasia. In H. Whitaker & H. A. Whitaker (eds.), Studies in neurolinguistics, vol. 1, New York: Academic Press.Google Scholar
  104. Molloy, Brownell, & Gardner (1990). Discourse comprehension by right-hemisphere stroke patients: Deficits in prediction and revision. In Y. Joanette & H. M. Brownell (eds.), Discourse ability and brain damage: Theoretical and empirical perspectives. New York: Springer Press, pp. 113–130.Google Scholar
  105. Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E. H., & Berg, L., (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archive of Neurology, 58 (3), 397–405.Google Scholar
  106. Murdoch, B. E., Afford, R. J., Ling, A. R., & Ganguley, B. (1986). Acute computerized tomographic scans: their value in the localization of lesions and as prognostic indicators in aphasia. Journal of Communication Disorders, 19(5), 311–45.Google Scholar
  107. Murdoch, B. E., Chenery, H. J., Wilks, V., & Boyle, R. S. (1987). Language disorders in dementia of the Alzheimer type. Brain and Language, 31(1), 122–37.Google Scholar
  108. Musso, M., Weiller, C., Kiebel, S., Müller, S. P., Bülau, P., & Rijntjes, M. (1999). Training-induced brain plasticity in aphasia. Brain: A Journal of Neurology, 122(9), 1781–90.Google Scholar
  109. Myers, P. S., & Linebaugh, C. W. (1981). Comprehension of idiomatic expressions by right hemisphere damaged adults. In R. H. Brookshire (ed.), Clinical Aphasiology. Minneapolis: BRK Publishers, pp. 254–61.Google Scholar
  110. Naeser, M. A., & Palumbo, C. L. (1994). Neuroimaging and language recovery in stroke. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 11(2), 150–74.Google Scholar
  111. Nebes, R. D., Boller, F., & Holland, A. (1986). Use of semantic context by patients with Alzheimer’s disease. Psychology and Aging, 1, 261–69.Google Scholar
  112. Nebes, R. D., Brady, C. B., & Huff, F. J. (1989). Automatic and attentional mechanisms of semantic priming in Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 11(2), 219–30.Google Scholar
  113. Nespoulous, J. L., Dordain, M., Perron, C., Ska, B., Bub, D., Caplan, D., Mehler, J., & Lecours, A. R. (1988). Agrammatism in sentence production without comprehension deficits: reduced availability of syntactic structures and/or of grammatical morphemes? A case study. Brain and Language, 33(2), 273–295.Google Scholar
  114. Nichelli, P., Grafman, J., Pietrini, P., Clark, K., Lee, K. Y., & Miletich, R. (1995). Where the brain appreciates the moral of a story. Neuroreport, 6(17), 2309–13.Google Scholar
  115. Nocentini, U., Goulet, P., Drolet, M., & Joanette, Y. (1999). Age-related evolution of the contribution of the right hemisphere to language: absence of evidence. The International Journal of Neuroscience, 99(1–4), 59–67.Google Scholar
  116. Ober, B. A., & Shenaut, G. K. 1988. Lexical decision and priming in Alzheimer’s disease. Neuropsychologia, 26, 273–86.Google Scholar
  117. Oberman, L. M., & Ramachandran, V. S. (2007). The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin, 133(2), 310–27.Google Scholar
  118. Ohyama, M., Senda, M., Kitamura, S., Ishii, K., Mishina, M., & Terashi, A. (1996). Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics. A PET activation study. Stroke; a Journal of Cerebral Circulation, 27(5), 897–903.Google Scholar
  119. Ostrin, R. K., & Tyler, L. K. (1993). Automatic access to lexical semantics in aphasia: evidence from semantic and associative priming. Brain and Language, 45(2), 147–159.Google Scholar
  120. Peng, F. C. C. (2009). Language in the brain: critical assessments. London; New York: Continuum Intl Pub Group.Google Scholar
  121. Petersen, R. C. (2003). Conceptual overview. In R. C. Petersen (ed), Mild cognitive impairment: Aging to Alzheimer’s disease. New York: Oxford University Press.Google Scholar
  122. Pick, A. (1913). Die agrammatischen Sprachstörungen. Berlin: Springer.Google Scholar
  123. Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10(1), 15–35.Google Scholar
  124. Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (ed.), Information Processing and Cognition: The Loyola Symposium. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  125. Postman-Caucheteux, W. A., Birn, R. M., Pursley, R. H., Butman, J. A., Solomon, J. M., Picchioni, D., McArdle, J., & Braun, A. R. (2010). Single-trial fMRI shows contralesional activity linked to overt naming errors in chronic aphasic patients. Journal of Cognitive Neuroscience, 22(6), 1299–318.Google Scholar
  126. Prather, P. A., Zurif, E., Love, T., & Brownell, H. (1997). Speed of lexical activation in nonfluent Broca’s aphasia and fluent Wernicke’s aphasia. Brain and Language, 59(3), 391–411.Google Scholar
  127. Rochon, E., Waters, G. S., & Caplan, D. (1994). Sentence comprehension in patients with Alzheimer’s disease. Brain and Language, 46(2), 329–49.Google Scholar
  128. Rosen, H. J., Petersen, S. E., Linenweber, M. R., Snyder, A. Z., White, D. A., Chapman, L., Dromerick, A. W., Fiez, J. A., Corbetta, M. D. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55(12), 1883–94.Google Scholar
  129. Roskies, A. L., Fiez, J. A., Balota, D. A., Raichle, M. E., & Petersen, S. E. (2001). Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. Journal of Cognitive Neuroscience, 13(6), 829–43.Google Scholar
  130. Salmon, D. P., Shimamura, A., Butters, N., & Smith, S. 1988. Lexical and semantic priming deficits in patients with Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 10, 477–494.Google Scholar
  131. Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain: A Journal of Neurology, 129(6), 1371–84.Google Scholar
  132. Saykin, A. J., Flashman, L. A., Frutiger, S. A., Johnson, S. C., Mamourian, A. C., Moritz, C. H., O’Jile, J. R., Riordan, H. J., Santulli, R. B., Smith, C. A.,Weaver, J. B. (1999). Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. Journal of the International Neuropsychological Society: JINS, 5(5), 377–92.Google Scholar
  133. Schlaug, G., Marchina, S., & Norton, A. (2009). Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Annals of the New York Academy of Sciences, 1169, 385–94.Google Scholar
  134. Schneider, W., & R.. Shiffrin. (1977). Controlled and automatic human information processing: 1. Detection, search, and attention. Psychological Review, 84, 1–66.Google Scholar
  135. Schulte-Rüther, M., Greimel, E., Markowitsch, H. J., Kamp-Becker, I., Remschmidt, H., Fink, G. R., & Piefke, M. (2011). Dysfunctions in brain networks supporting empathy: An fMRI study in adults with autism spectrum disorders. Social Neuroscience, 6(1), 1–21.Google Scholar
  136. Schwartz, M., Marin, O., & Saffran, E. 1979. Dissociations of language function in dementia: A case study. Brain and Language, 7, 277–306.Google Scholar
  137. Schwartz, M. F., Linebarger, M. C., Saffran, E. M., & Pate, D. S. (1987). Syntactic transparency and sentence interpretation in aphasia. Language and Cognitive Processes, 2(2), 85–113.Google Scholar
  138. Scott, F. J., & Baron-Cohen, S. (1996). Imagining real and unreal things: evidence of a dissociation in autism. Journal of Cognitive Neuroscience, 8(4), 371–82.Google Scholar
  139. Seidenberg, M. S. (1985). Lexicon as module. The Behavioral and Brain Sciences, 8(1), 31–2.Google Scholar
  140. Selnes, O. A., Knopman, D. S., Niccum, N., Rubens, A. B., & Larson, D. (1983). Computed tomographic scan correlates of auditory comprehension deficits in aphasia: a prospective recovery study. Annals of Neurology, 13(5), 558–66.Google Scholar
  141. Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127 190.Google Scholar
  142. Sperber, D., & Wilson, D. (1987). Precis of relevance: Communication and cognition. Behavioral and Brain Sciences. 10, 697–754.Google Scholar
  143. Sperber, D. (2001). Relevance: communication and cognition (2nd edition). Oxford: Blackwell Publishers.Google Scholar
  144. Swettenham, J. G., Baron-Cohen, S., Gomez, J. C., & Walsh, S. (1996). What’s inside someone’s head? Conceiving of the mind as a camera helps children with autism acquire an alternative to a theory of mind. Cognitive Neuropsychiatry, 1(1), 73–88.Google Scholar
  145. Swinney, D., Zurif, E., & Nicol, J. (1989). The effects of focal brain damage on sentence processing: an examination of the neurological organization of a mental module. Journal of Cognitive Neuroscience, 1(1), 25–37.Google Scholar
  146. Thompson, C. K. (2000). Neuroplasticity: evidence from aphasia. Journal of Communication Disorders, 33(4), 357–66.Google Scholar
  147. Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: inferring “how” from “where.” Neuropsychologia, 41(3), 280–92.Google Scholar
  148. Thompson-Schill, S. L., Aguirre, G. K., D’Esposito, M., & Farah, M. J. (1999). A neural basis for category and modality specificity of semantic knowledge. Neuropsychologia, 37(6), 671–76.Google Scholar
  149. Thulborn, K. R., Carpenter, P. A., & Just, M. A. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke; a Journal of Cerebral Circulation, 30(4), 749–54.Google Scholar
  150. Tompkins, C. A., Boada, R., & McGarry, K. (1992). The access and processing of familiar idioms by brain-damaged and normally aging adults. Journal of Speech and Hearing Research, 35(3), 626–37.Google Scholar
  151. Van Lancker, D. (1990). The neurology of proverbs. Behavioural Neurology, 3, 169–87.Google Scholar
  152. Van Lancker, D. R., & Kempler, D. (1987). Comprehension of familiar phrases by left- but not by right-hemisphere damaged patients. Brain and Language, 32(2), 265–277.Google Scholar
  153. Vandenberghe, R., Price, C., Wise, R., Josephs, O., & Frackowiak, R. S. (1996). Functional anatomy of a common semantic system for words and pictures. Nature, 383(6597), 254–56.Google Scholar
  154. Wagner, A. D., Paré-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron, 31(2), 329–38.Google Scholar
  155. Warburton, L. (1999). Management of stroke: A practical guide for the prevention, evaluation and treatment of acute stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 66(5), 696A.Google Scholar
  156. Waters, G., & Caplan, D. (2002). Working memory and online syntactic processing in Alzheimer’s disease: studies with auditory moving window presentation. Journal of Gerontoly. Series B. Psychology Sciences Social Sciences, 57(4), 298–311.Google Scholar
  157. Waters, G. S., Rochon, E., & Caplan, D. (1998). Task demands and sentence comprehension in patients with dementia of the Alzheimer’s type. Brain and Language, 62(3), 361–97.Google Scholar
  158. Weiller, C., Isensee, C., Rijntjes, M., Huber, W., Müller, S., Bier, D., Dutschka, K., Woods, R. P., Noth, J., Diener, H. C. (1995). Recovery from Wernicke’s aphasia: a positron emission tomographic study. Annals of Neurology, 37(6), 723–32.Google Scholar
  159. Wernicke, C. (1874). Der aphasische Symptomencomplex, eine psychologische Studie auf anatomischer Basis [German]. Breslau: M. Cohn und Weigert.Google Scholar
  160. Winner, E., & Gardner, H. (1977). The comprehension of metaphor in brain-damaged patients. Brain, 100(4), 717–29.Google Scholar
  161. Yirmiya, N., Solomonica-Levi, D., & Shulman, C. (1996). The ability to manipulate behaviour and to understand manupulation of beliefs: A comparison of individuals with autism, mental retardation, and normal development. Developmental Psychology, 32, 62–9.Google Scholar
  162. Zurif, E., Swinney, D., Prather, P., Solomon, J., & Bushell, C. (1993). An on-line analysis of syntactic processing in Broca’s and Wernicke’s aphasia. Brain and Language, 45(3), 448–64.Google Scholar
  163. Zurif, E. B., & Caramazza, A. (1976). Dissociation of algorithmic and heuristic processes in language comprehension: evidence from aphasia. Brain and Language, 3(4), 572–82.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.School of MedicineUniversity of California, San DiegoSan Diego, La JollaUSA

Personalised recommendations