Zusammenfassung
Drei exemplarische neuropsychologische Störungen verdeutlichen, wie die kognitiven Funktionen des menschlichen Sprachsystems gestört werden können: Aphasie, Alzheimer-Krankheit und Autismus-Spektrum-Störung. Das Sprachnetzwerk wird von allen drei Störungen auf eine unterschiedliche Art und Weise beeinträchtigt. Die durch einen Schlaganfall verursachten fokalen Läsionen innerhalb des linken frontotemporalen Schaltkreises sind gewöhnlich die Gründe dafür, dass spezifische Komponenten des Sprachnetzwerks ausfallen. Allerdings ermöglicht die Neuroplastizität, dass zum Teil aphasische Störungen erfolgreich kompensiert werden können. Die Prüfung des aphasischen Genesungsprozesses verdeutlicht, dass sich das Sprachnetzwerk auch unter dem Einfluss der intakten rechtshemisphärischen Funktionen reorganisieren kann. Im Fall der Alzheimer-Krankheit beeinflussen bestimmte Gedächtnisfunktionsstörungen das Sprachnetzwerk. Es handelt sich um eine fortschreitende Krankheit, von der selektiv bestimmte Sprachkomponenten stärker beeinträchtigt werden als andere. Die Autismus-Spektrum-Störung wird offenbar durch eine atypische Entwicklung der neuronalen Verschaltung in Bezug auf Konnektivität und „Pruning“ verursacht.
Stichwörter
Alzheimer-Krankheit Amyloide Plaques Aphasie APOE 4 Autismus-Spektrum- Störung Bildhafte Sprache Konnektivität Leichte Kognitive Beeinträchtigung Neurofibrilläres Bündel Pragmatik Pruning Soziale KognitionPreview
Unable to display preview. Download preview PDF.
Literatur
- Alexander, M. P., Naeser, M. A., & Palumbo, C. (1990). Broca’s area aphasias: Aphasia after lesions including the frontal operculum. Neurology, 40, 353–62.Google Scholar
- Almor, A., Kempler, D., MacDonald, M. C., Andersen, E. S., & Tyler, L. K. (1999). Why do Alzheimer patients have difficulty with pronouns? Working memory, semantics, and reference in comprehension and production in Alzheimer’s disease. Brain and Language, 67(3), 202–27.Google Scholar
- Appell, J., Kertesz, A., & Fisman, M. (1982). A study of language functioning in Alzheimer patients. Brain and Language, 17(1), 73–91.Google Scholar
- Balota, D. A., & Duchek, J. M. 1991. Semantic priming effects, lexical repetition effects, and contextual disambiguation effects in healthy aged individuals and individuals with senile dementia of the Alzheimer type. Brain and Language, 40, 181–201.Google Scholar
- Baron-Cohen, S. (1997). Hey! It was just a joke! Understanding propositions and propositional attitudes by normally developing children and children with autism. Israel Journal of Psychiatry and Related Sciences, 34(3), 174–8.Google Scholar
- Baron-Cohen, S., Spitz, A., & Cross, P. (1993). Can children with autism recognize surprise? Cognition and Emotion, 7, 507–16.Google Scholar
- Bayles, K. A. (1982). Language function in senile dementia. Brain and Language, 16(2), 265–80.Google Scholar
- Bayles, K. A., & Tomoeda, C. K. (1983). Confrontation naming impairment in dementia. Brain and Language, 19(1), 98–114.Google Scholar
- Bayles, K. A., Tomoeda, C. K., & Trosset, M. W. (1990). Naming and categorical knowledge in Alzheimer’s disease: the process of semantic memory deterioration. Brain and Language, 39(4), 498–510.Google Scholar
- Baynes, K., Tramo, M. J., & Gazzaniga, M. S. (1992). Reading with a limited lexicon in the right hemisphere of a callosotomy patient. Neuropsychologia, 30(2), 187–200.Google Scholar
- Bickel, C., Pantel, J., Eysenbach, K., & Schröder, J. (2000). Syntactic comprehension deficits in Alzheimer’s disease. Brain and Language, 71(3), 432–48.Google Scholar
- Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17(1), 353–62.Google Scholar
- Blumstein, S. E., Milberg, W., & Shrier, R. (1982). Semantic processing in aphasia: evidence from an auditory lexical decision task. Brain and Language, 17(2), 301–315.Google Scholar
- Bockheimer, S. (2002). Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annual Review of Neuroscience, 25, 151–88.Google Scholar
- Bottini, G., Corcoran, R., Sterzi, R., Paulesu, E., Schenone, P., Scarpa, P., Frackowiak, R. S., & Frith, C. D. (1994). The role of the right hemisphere in the interpretation of figurative aspects of language. A positron emission tomography activation study. Brain, 117(6), 1241–53.Google Scholar
- Bradley, D. C. (1978). Computational distinctions of vocabulary type. Unpublished doctoral dissertation. Cambridge, MA: MIT Press.Google Scholar
- Broca, P. (1861). Remarques sur le siège de la faculté du langage articulé suivies d’une observation d’aphèmie (perte de la parole) [French]. Bulletin de la Société d’Anatomie de Paris, 330–57.Google Scholar
- Butters, N., Granholm, E., Salmon, D. P., Grant, I., & Wolfe, J. (1987). Episodic and semantic memory: a comparison of amnesic and demented patients. Journal of Clinical and Experimental Neuropsychology, 9(5), 479–97.Google Scholar
- Butterworth, G., & Jarrett, N. (1991). What minds have in common is space: Spatial mechanisms serving joint visual attention in infancy. British Journal of Developmental Psychology, 9(1), 55–72.Google Scholar
- Caplan, D. (1987). Neurolinguistics and linguistic aphasiology: an introduction. Cambridge: Cambridge University Press.Google Scholar
- Caplan, D., & Hildebrandt, N. (1988). Disorders of syntactic comprehension. Cambridge, MA: MIT Press.Google Scholar
- Caramazza, A., & Zurif, E. B. (1976). Dissociation of algorithmic and heuristic processes in language comprehension: evidence from aphasia. Brain and Language, 3(4), 572–82.Google Scholar
- Caramazza, A., Berndt, R. S., & Brownell, H. H. (1982). The semantic deficit hypothesis: perceptual parsing and object classification by aphasic patients. Brain and Language, 15(1), 161–89.Google Scholar
- Castelli, F. (2005). Understanding emotions from standardized facial expressions in autism and normal development. Autism: The International Journal of Research and Practice, 9(4), 428–449.Google Scholar
- Chertkow, H., & Bub, D. (1990). Semantic memory loss in dementia of Alzheimer’s type. What do various measures measure? Brain: A Journal of Neurology, 113 (2), 397–417.Google Scholar
- Chertkow, H., Bub, D., & Seidenberg, M. 1989. Priming and semantic memory loss in Alzheimer’s disease. Brain and Language, 36, 420–46.Google Scholar
- Corder, E. H., Saunders, A. M., Risch, N. J., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Jr, J. Rimmler, B., Locke, P. A., Conneally, P. M., Schmader, K. E., Small, G. W., Roses, A. D., Haines, J. L., & Pericak-Vance, M. A. (1994). Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nature Genetics, 7(2), 180–84.Google Scholar
- Cornelissen, K., Laine, M., Tarkiainen, A., Järvensivu, T., Martin, N., & Salmelin, R. (2003a). Adult brain plasticity elicited by anomia treatment. Journal of Cognitive Neuroscience, 15(3), 444–61.Google Scholar
- Courchesne, E., Karns, C. M., Davis, H. R., Ziccar di, R., Carper, R. A., Tigue, Z. D., Chisum, H. J., Moses, P., Pierce, K., Lord, C., Lincoln, A. J., Pizzo, S., Schreibman, L., Haas, R. H., Akshoomoff, N. A., & Courchesne, R. Y. (2001). Unusual brain growth patterns in early life in patients with autistic disorder: an MRI study. Neurology, 57(2), 245–254.Google Scholar
- Courchesne, E., Mouton, PR, Calhoun, ME, Semendeferi, K., Ahrens-Barbeau, C., Hallet, M. J., Barnes, C. C., & Pierce, K. (2011). Neuron number and size in prefrontal cortex of children with autism. JAMA, 306(18), 2001–10.Google Scholar
- Cross, K., Smith, E. E., & Grossman, M. (2008). Knowledge of natural kinds in semantic dementia and Alzheimer’s disease. Brain and Language, 105(1), 32–40.Google Scholar
- Cummings, J. L., Benson, F., Hill, M. A., & Read, S. (1985). Aphasia in dementia of the Alzheimer type. Neurology, 35(3), 394–97.Google Scholar
- Damasio, H., Grabowski, T. J., Tranel, D., Hichwa, R. D., & Damasio, A. R. (1996). A neural basis for lexical retrieval. Nature, 380(6574), 499–505.Google Scholar
- Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., Iacoboni, M., & (2006). Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30.Google Scholar
- De Renzi, E., & Vignolo, L. A. (1962). The token test: A sensitive test to detect receptive disturbances in aphasics. Brain, 85(4), 665–78.Google Scholar
- Dronkers, N. F. (1996). A new brain region for coordinating speech articulation. Nature, 384, 159–61.Google Scholar
- Ecker, C., Ronan, L., Feng, Y., Daly, E., Murphy, C., Ginestet, C. E., Brammer, M., Fletcher, P. C., Bullmore, E. T., Suckling, J., Baron-Cohen, S., Williams, S., Loth, E.; MRC AIMS Consortium, Murphy, D. G. (2013). Intrinsic gray-matter connectivity of the brain in adults with autism spectrum disorder. Proceedings of the National Academy of Sciences, 110(32), 13222–7.Google Scholar
- Emery, O. B., & Breslau, L. D. (1989). Language deficits in depression: comparisons with SDAT and normal aging. Journal of Gerontology, 44(3), M85–92.Google Scholar
- Fodor, J. A. (1983). The modularity of mind. Cambridge, MA: MIT Press.Google Scholar
- Fombonne, E., Rogé, B., Claverie, J., Courty, S., & Frémolle, J. (1999). Microcephaly and macrocephaly in autism. Journal of Autism and Developmental Disorders, 29(2), 113–19.Google Scholar
- Forster, K. I. (1979). Levels of processing and the structure of the language processor. In W. E. Cooper & E. Walker (eds.), Sentence processing: Psycholinguistics studies presented to Merrill Garret. Hillsdale, NJ: Larence Erlbaum.Google Scholar
- Frackowiak, R. S. (2001). New functional cerebral cartography: studies of plasticity of the human brain. Bulletin de l’Académie nationale de médecine, 185(4), 707–24.Google Scholar
- Frith, C. (2003). What do imaging studies tell us about the neural basis of autism? Novartis Foundation Symposium, 251, 149–66.Google Scholar
- Gainotti, G., Caltagirone, C., Miceli, G., & Masullo, C. (1981). Selective semantic-lexical impairment of language comprehension in right-brain-damaged patients. Brain and Language, 13(2), 201–11.Google Scholar
- Gallese, V. (2007). Before and below “theory of mind”: embodied simulation and the neural correlates of social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 659–69.Google Scholar
- Gallese, V. (2008). Mirror neurons and the social nature of language: The neural exploitation hypothesis. Social Neuroscience, 3(3–4), 317–33.Google Scholar
- Gazzaniga, M. S. (1995). Principles of human brain organization derived from split-brain studies. Neuron, 14(2), 217–28.Google Scholar
- Gazzaniga, M. S., & Sperry, R. W. (1967). Language after section of the cerebral commissures. Brain: A Journal of Neurology, 90(1), 131–48.Google Scholar
- Golob, E. J., Johnson, J. K., & Starr, A. (2002). Auditory event-related potentials during target detection are abnormal in mild cognitive impairment. Clinical Neurophysiology, 113(1), 151–61.Google Scholar
- Goodglass, H., & E. Baker (1976): Semantic field, naming, and auditory comprehension in aphasia. Brain and Language, 3, 359–74.Google Scholar
- Goodglass, H. (1976). Agrammatism. In H. Whitaker & H. A. Whitaker (eds.), Studies in neurolinguistics, vol. 1. New York: Academic Press.Google Scholar
- Goodglass, H., & Berko, J. (1960). Agrammatism and inflectional morphology in English. Journal of Speech and Hearing Research, 3, 257–67.Google Scholar
- Gordon, B., & Caramazza, A. (1983). Closed- and open-class lexical access in agrammatic and fluent aphasics. Brain and Language, 19(2), 335–45.Google Scholar
- Grober, E., Buschke, H., Kawas, C., & Fuld, P. (1985). Impaired ranking of semantic attributes in dementia. Brain and Language, 26(2), 276–86.Google Scholar
- Grossman, M., & Rhee, J. (2001). Cognitive resources during sentence processing in Alzheimer’s disease. Neuropsychologia, 39(13), 1419–31.Google Scholar
- Grossman, M., & White-Devine, T. (1998). Sentence comprehension in Alzheimer’s disease. Brain and Language, 62(2), 186–201.Google Scholar
- Grossman, M., Koenig, P., DeVita, C., Glosser, G., Moore, P., Gee., J, Detre, J., & Alsop, D. (2003). Neural basis for verb processing in Alzheimer’s disease: an fMRI study. Neuropsychology, 17(4), 658–74.Google Scholar
- Grossman, M., Mickanin, J., Onishi, K., & Hughes, E. (1995). An aspect of sentence processing in Alzheimer’s disease: quantifier-noun agreement. Neurology, 45(1), 85–91.Google Scholar
- Grossman, M., Mickanin, J., Robinson, K. M., & D’Esposito, M. (1996). Anomaly judgments of subject-predicate relations in Alzheimer’s disease. Brain and Language, 54(2), 216–32.Google Scholar
- Grossman, M., Robinson, K., Biassou, N., White-Devine, T., & D’Esposito, M. (1998). Semantic memory in Alzheimer’s disease: representativeness, ontologic category, and material. Neuropsychology, 12(1), 34–42.Google Scholar
- Grossman, M., Peelle, J. E., Smith, E. E., McMillan, C. T., Cook, P., Powers, J., Dreyfuss, M., Bonner, M. F., Richmond, L., Boller, A., Camp, E., & Burkholder, L. (2013). Category-specific semantic memory: converging evidence from bold fMRI and Alzheimer’s disease. Neuroimage, 68, 263–74.Google Scholar
- Hamilton, A. F. de C. (2013). Reflecting on the mirror neuron system in autism: A systematic review of current theories. Developmental Cognitive Neuroscience, 3, 91–105.Google Scholar
- Happé, F. G. (1993). Communicative competence and theory of mind in autism: A test of relevance theory. Cognition, 48(2), 101–19.Google Scholar
- Happé, F. G. (1994). An advanced test of theory of mind: Understanding of story characters’ thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. Journal of Autism and Developmental Disorders, 24(2), 129–54.Google Scholar
- Happé, F. G. (1995). The role of age and verbal ability in the theory of mind task performance of subjects with autism. Child Development, 66(3), 843–55.Google Scholar
- Heiss, W. D., Kessler, J., Thiel, A., Ghaemi, M., Karbe, H. (1999). Differential capacity of left and right hemispheric areas for compensation of poststroke aphasia. Annals of Neurology, 45(4), 430–8.Google Scholar
- Hier, D. B., Hagenlocker, K., & Shindler, A. G. (1985). Language disintegration in dementia: effects of etiology and severity. Brain and Language, 25(1), 117–33.Google Scholar
- Hillert, D. (1990). Sprachprozesse und Wissensstrukturen [German]. Opladen: Westdeutscher Press.Google Scholar
- Hillert, D. (1999). On Processing Lexical Concepts in Aphasia and Alzheimer’s disease. Some (Re)considerations. Brain and Language 69, 95–118.Google Scholar
- Hillert, D. G. (2004). Spared access to idiomatic and literal meanings: A single-case approach. Brain and Language, 89(1), 207–15.Google Scholar
- Hillis, A. E. (2002). Does the right make it right? Questions about recovery of language after stroke. Annals of Neurology, 51(5), 537–38.Google Scholar
- Hodges, J. R., Salmon, D. P., & Butters, N. (1992). Semantic memory impairment in Alzheimer’s disease: failure of access or degraded knowledge? Neuropsychologia, 30(4), 301–14.Google Scholar
- Huff, F. J., Corkin, S., & Growden, J. H. (1986). Semantic impairment and anomia in Alzheimer’s disease. Brain and Language, 28, 235–49.Google Scholar
- Iacoboni, M. (1999). Cortical mechanisms of human imitation. Science, 286(5449), 2526–28.Google Scholar
- Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Reviews. Neuroscience, 12, 942–51.Google Scholar
- Ingram, J. C. L. (2007). Neurolinguistics: An introduction to spoken language processing and its disorders. Cambridge University Press.Google Scholar
- Jucker, M., & Walker, L. C. (2011). Pathogenic protein seeding in Alzheimer disease and other neurodegenerative disorders. Annals of Neurology, 70(4), 532–40.Google Scholar
- Katz, W. F. (1988). An investigation of lexical ambiguity in Broca’s aphasics using an auditory lexical priming technique. Neuropsychologia, 26(5), 747–752.Google Scholar
- Kean, M-L. (1977). The Linguistic Description of Aphasic Syndromes. Cognition, 5, 9–46.Google Scholar
- Kemper, S., LaBarge, E., Ferraro, F. R., Cheung, H., Cheung, H., & Storandt, M. (1993). On the preservation of syntax in Alzheimer’s disease. Evidence from written sentences. Archives of Neurology, 50(1), 81–6.Google Scholar
- Kempler, D., Almor, A. Tyler, L. K., Andersen, E. S., MacDonald, M. C. (1998). Sentence comprehension deficits in Alzheimer’s disease: a comparison of off-line vs. on-line sentence processing. Brain and Language, 64(3), 297–316.Google Scholar
- Kempler, D., Van Lancker D., & Read, S. (1988). Proverb and idiom comprehension in Alzheimer disease. Alzheimer Disease and Associated Disorders, 2(1), 38–49.Google Scholar
- Kertesz, A., Appell, J., & Fisman, M. (1986). The dissolution of language in Alzheimer’s disease. The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques, 13(4), 415–18.Google Scholar
- Kertesz, A., Lau, W. K., Polk, M. (1993). The structural determinants of recovery in Wernicke’s aphasia. Brain and Language, 44, 153–64.Google Scholar
- Kolk, H. H., & Blomert, L. (1985). On the Bradley hypothesis concerning agrammatism: the nonword-interference effect. Brain and Language, 26(1), 94–105.Google Scholar
- Kussmaul, A. (1877). Die Störungen der Sprache. Leipzig. [In German]Google Scholar
- Kutas, M., & Van Petten, C. 1994. Psycholingusistics electrified: Event-related brain potential investigations. In M. Gernsbacher (ed.), Handbook of psycholinguistics. New York: Academic Press, pp. 83–143.Google Scholar
- Lainhart, J. E., Piven, J., Wzorek, M., Landa, R., Santangelo, S. L., Coon, H., & Folstein, S. E. (1997). Macrocephaly in children and adults with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 36(2), 282–90.Google Scholar
- Leslie, A. M., & Frith, U. (1988). Autistic children’s understanding of seeing, knowing and believing. British Journal of Developmental Psychology, 6(4), 315–24.Google Scholar
- Lesser, R. (1990). Linguistic investigations of aphasia. London; Jersey City: Whurr Publishers.Google Scholar
- Lichtheim, L. (1884). Ueber Aphasie [German]. Deutsches Archiv Für Klinische Medicin, 36, 204–68.Google Scholar
- Lopez, O. L., Jagust, W. J., DeKosky, S. T., Becker, J. T., Fitzpatrick, A., Dulberg, C., Breitner, J., Lyketsos, C., Jones, B., Kawas, C., Carlson, M., & Kuller, L. H. (2003). Prevalence and classification of mild cognitive impairment in the cardiovascular health study cognition Study, Part 1. Archives of Neurology, 60, 1385–89.Google Scholar
- Lukatela, K., Crain, S., & Shankweiler, D. (1988). Sensitivity to inflectional morphology in agrammatism: Investigation of a highly inflected language. Brain and Language, 33, 1–15.Google Scholar
- Martin, A., & Fedio, P. (1983). Word production and comprehension in Alzheimer’s disease: the breakdown of semantic knowledge. Brain and Language, 19(1), 124–41.Google Scholar
- Martin, R. C. (1987). Articulatory and phonological deficits in short-term memory and their relation to syntactic processing. Brain and Language, 32(1), 159–92.Google Scholar
- Mazumdar, S., King, M., Liu, K.-Y., Zerubavel, N., & Bearman, P. (2010). The spatial structure of autism in California, 1993–2001. Health & Place, 16(3), 539–546.Google Scholar
- McClelland, J. L. (1987). The case for interactionism in language processing.In M. Coltheart (ed.), Attention & performance XII: The psychology of reading. London: Erlbaum, pp. 1–36.Google Scholar
- Meinzer, M., Flaisch, T., Breitenstein, C., Wienbruch, C., Elbert, T., & Rockstroh, B. (2008). Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. NeuroImage, 39(4), 2038–46.Google Scholar
- Mesulam, M. (1994). Neurocognitive networks and selectively distributed processing. Revue Neurologique, 150(8–9), 564–69.Google Scholar
- Miceli, G., Mazzucchi, A., Menn, L., & Goodglass, H. (1983). Contrasting cases of Italian agrammatic aphasia without comprehension disorder. Brain and Language, 19(1), 65–97.Google Scholar
- Milberg, W., & Blumstein, S. E. (1981a). Lexical decision and aphasia: evidence for semantic processing. Brain and Language, 14(2), 371–85.Google Scholar
- Milberg, W., Blumstein, S. E., & Dworetzky, B. (1987a). Processing of lexical ambiguities in aphasia. Brain and Language, 31(1), 138–50.Google Scholar
- Mohr, J. P. (1976). Broca’s area and Broca’s aphasia. In H. Whitaker & H. A. Whitaker (eds.), Studies in neurolinguistics, vol. 1, New York: Academic Press.Google Scholar
- Molloy, Brownell, & Gardner (1990). Discourse comprehension by right-hemisphere stroke patients: Deficits in prediction and revision. In Y. Joanette & H. M. Brownell (eds.), Discourse ability and brain damage: Theoretical and empirical perspectives. New York: Springer Press, pp. 113–130.Google Scholar
- Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E. H., & Berg, L., (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archive of Neurology, 58 (3), 397–405.Google Scholar
- Murdoch, B. E., Afford, R. J., Ling, A. R., & Ganguley, B. (1986). Acute computerized tomographic scans: their value in the localization of lesions and as prognostic indicators in aphasia. Journal of Communication Disorders, 19(5), 311–45.Google Scholar
- Murdoch, B. E., Chenery, H. J., Wilks, V., & Boyle, R. S. (1987). Language disorders in dementia of the Alzheimer type. Brain and Language, 31(1), 122–37.Google Scholar
- Musso, M., Weiller, C., Kiebel, S., Müller, S. P., Bülau, P., & Rijntjes, M. (1999). Training-induced brain plasticity in aphasia. Brain: A Journal of Neurology, 122(9), 1781–90.Google Scholar
- Myers, P. S., & Linebaugh, C. W. (1981). Comprehension of idiomatic expressions by right hemisphere damaged adults. In R. H. Brookshire (ed.), Clinical Aphasiology. Minneapolis: BRK Publishers, pp. 254–61.Google Scholar
- Naeser, M. A., & Palumbo, C. L. (1994). Neuroimaging and language recovery in stroke. Journal of Clinical Neurophysiology: Official Publication of the American Electroencephalographic Society, 11(2), 150–74.Google Scholar
- Nebes, R. D., Boller, F., & Holland, A. (1986). Use of semantic context by patients with Alzheimer’s disease. Psychology and Aging, 1, 261–69.Google Scholar
- Nebes, R. D., Brady, C. B., & Huff, F. J. (1989). Automatic and attentional mechanisms of semantic priming in Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 11(2), 219–30.Google Scholar
- Nespoulous, J. L., Dordain, M., Perron, C., Ska, B., Bub, D., Caplan, D., Mehler, J., & Lecours, A. R. (1988). Agrammatism in sentence production without comprehension deficits: reduced availability of syntactic structures and/or of grammatical morphemes? A case study. Brain and Language, 33(2), 273–295.Google Scholar
- Nichelli, P., Grafman, J., Pietrini, P., Clark, K., Lee, K. Y., & Miletich, R. (1995). Where the brain appreciates the moral of a story. Neuroreport, 6(17), 2309–13.Google Scholar
- Nocentini, U., Goulet, P., Drolet, M., & Joanette, Y. (1999). Age-related evolution of the contribution of the right hemisphere to language: absence of evidence. The International Journal of Neuroscience, 99(1–4), 59–67.Google Scholar
- Ober, B. A., & Shenaut, G. K. 1988. Lexical decision and priming in Alzheimer’s disease. Neuropsychologia, 26, 273–86.Google Scholar
- Oberman, L. M., & Ramachandran, V. S. (2007). The simulating social mind: The role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin, 133(2), 310–27.Google Scholar
- Ohyama, M., Senda, M., Kitamura, S., Ishii, K., Mishina, M., & Terashi, A. (1996). Role of the nondominant hemisphere and undamaged area during word repetition in poststroke aphasics. A PET activation study. Stroke; a Journal of Cerebral Circulation, 27(5), 897–903.Google Scholar
- Ostrin, R. K., & Tyler, L. K. (1993). Automatic access to lexical semantics in aphasia: evidence from semantic and associative priming. Brain and Language, 45(2), 147–159.Google Scholar
- Peng, F. C. C. (2009). Language in the brain: critical assessments. London; New York: Continuum Intl Pub Group.Google Scholar
- Petersen, R. C. (2003). Conceptual overview. In R. C. Petersen (ed), Mild cognitive impairment: Aging to Alzheimer’s disease. New York: Oxford University Press.Google Scholar
- Pick, A. (1913). Die agrammatischen Sprachstörungen. Berlin: Springer.Google Scholar
- Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. NeuroImage, 10(1), 15–35.Google Scholar
- Posner, M. I., & Snyder, C. R. R. (1975). Attention and cognitive control. In R. L. Solso (ed.), Information Processing and Cognition: The Loyola Symposium. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
- Postman-Caucheteux, W. A., Birn, R. M., Pursley, R. H., Butman, J. A., Solomon, J. M., Picchioni, D., McArdle, J., & Braun, A. R. (2010). Single-trial fMRI shows contralesional activity linked to overt naming errors in chronic aphasic patients. Journal of Cognitive Neuroscience, 22(6), 1299–318.Google Scholar
- Prather, P. A., Zurif, E., Love, T., & Brownell, H. (1997). Speed of lexical activation in nonfluent Broca’s aphasia and fluent Wernicke’s aphasia. Brain and Language, 59(3), 391–411.Google Scholar
- Rochon, E., Waters, G. S., & Caplan, D. (1994). Sentence comprehension in patients with Alzheimer’s disease. Brain and Language, 46(2), 329–49.Google Scholar
- Rosen, H. J., Petersen, S. E., Linenweber, M. R., Snyder, A. Z., White, D. A., Chapman, L., Dromerick, A. W., Fiez, J. A., Corbetta, M. D. (2000). Neural correlates of recovery from aphasia after damage to left inferior frontal cortex. Neurology, 55(12), 1883–94.Google Scholar
- Roskies, A. L., Fiez, J. A., Balota, D. A., Raichle, M. E., & Petersen, S. E. (2001). Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. Journal of Cognitive Neuroscience, 13(6), 829–43.Google Scholar
- Salmon, D. P., Shimamura, A., Butters, N., & Smith, S. 1988. Lexical and semantic priming deficits in patients with Alzheimer’s disease. Journal of Clinical and Experimental Neuropsychology, 10, 477–494.Google Scholar
- Saur, D., Lange, R., Baumgaertner, A., Schraknepper, V., Willmes, K., Rijntjes, M., & Weiller, C. (2006). Dynamics of language reorganization after stroke. Brain: A Journal of Neurology, 129(6), 1371–84.Google Scholar
- Saykin, A. J., Flashman, L. A., Frutiger, S. A., Johnson, S. C., Mamourian, A. C., Moritz, C. H., O’Jile, J. R., Riordan, H. J., Santulli, R. B., Smith, C. A.,Weaver, J. B. (1999). Neuroanatomic substrates of semantic memory impairment in Alzheimer’s disease: patterns of functional MRI activation. Journal of the International Neuropsychological Society: JINS, 5(5), 377–92.Google Scholar
- Schlaug, G., Marchina, S., & Norton, A. (2009). Evidence for plasticity in white-matter tracts of patients with chronic Broca’s aphasia undergoing intense intonation-based speech therapy. Annals of the New York Academy of Sciences, 1169, 385–94.Google Scholar
- Schneider, W., & R.. Shiffrin. (1977). Controlled and automatic human information processing: 1. Detection, search, and attention. Psychological Review, 84, 1–66.Google Scholar
- Schulte-Rüther, M., Greimel, E., Markowitsch, H. J., Kamp-Becker, I., Remschmidt, H., Fink, G. R., & Piefke, M. (2011). Dysfunctions in brain networks supporting empathy: An fMRI study in adults with autism spectrum disorders. Social Neuroscience, 6(1), 1–21.Google Scholar
- Schwartz, M., Marin, O., & Saffran, E. 1979. Dissociations of language function in dementia: A case study. Brain and Language, 7, 277–306.Google Scholar
- Schwartz, M. F., Linebarger, M. C., Saffran, E. M., & Pate, D. S. (1987). Syntactic transparency and sentence interpretation in aphasia. Language and Cognitive Processes, 2(2), 85–113.Google Scholar
- Scott, F. J., & Baron-Cohen, S. (1996). Imagining real and unreal things: evidence of a dissociation in autism. Journal of Cognitive Neuroscience, 8(4), 371–82.Google Scholar
- Seidenberg, M. S. (1985). Lexicon as module. The Behavioral and Brain Sciences, 8(1), 31–2.Google Scholar
- Selnes, O. A., Knopman, D. S., Niccum, N., Rubens, A. B., & Larson, D. (1983). Computed tomographic scan correlates of auditory comprehension deficits in aphasia: a prospective recovery study. Annals of Neurology, 13(5), 558–66.Google Scholar
- Shiffrin, R. M., & Schneider, W. (1977). Controlled and automatic human information processing: II. Perceptual learning, automatic attending, and a general theory. Psychological Review, 84, 127 190.Google Scholar
- Sperber, D., & Wilson, D. (1987). Precis of relevance: Communication and cognition. Behavioral and Brain Sciences. 10, 697–754.Google Scholar
- Sperber, D. (2001). Relevance: communication and cognition (2nd edition). Oxford: Blackwell Publishers.Google Scholar
- Swettenham, J. G., Baron-Cohen, S., Gomez, J. C., & Walsh, S. (1996). What’s inside someone’s head? Conceiving of the mind as a camera helps children with autism acquire an alternative to a theory of mind. Cognitive Neuropsychiatry, 1(1), 73–88.Google Scholar
- Swinney, D., Zurif, E., & Nicol, J. (1989). The effects of focal brain damage on sentence processing: an examination of the neurological organization of a mental module. Journal of Cognitive Neuroscience, 1(1), 25–37.Google Scholar
- Thompson, C. K. (2000). Neuroplasticity: evidence from aphasia. Journal of Communication Disorders, 33(4), 357–66.Google Scholar
- Thompson-Schill, S. L. (2003). Neuroimaging studies of semantic memory: inferring “how” from “where.” Neuropsychologia, 41(3), 280–92.Google Scholar
- Thompson-Schill, S. L., Aguirre, G. K., D’Esposito, M., & Farah, M. J. (1999). A neural basis for category and modality specificity of semantic knowledge. Neuropsychologia, 37(6), 671–76.Google Scholar
- Thulborn, K. R., Carpenter, P. A., & Just, M. A. (1999). Plasticity of language-related brain function during recovery from stroke. Stroke; a Journal of Cerebral Circulation, 30(4), 749–54.Google Scholar
- Tompkins, C. A., Boada, R., & McGarry, K. (1992). The access and processing of familiar idioms by brain-damaged and normally aging adults. Journal of Speech and Hearing Research, 35(3), 626–37.Google Scholar
- Van Lancker, D. (1990). The neurology of proverbs. Behavioural Neurology, 3, 169–87.Google Scholar
- Van Lancker, D. R., & Kempler, D. (1987). Comprehension of familiar phrases by left- but not by right-hemisphere damaged patients. Brain and Language, 32(2), 265–277.Google Scholar
- Vandenberghe, R., Price, C., Wise, R., Josephs, O., & Frackowiak, R. S. (1996). Functional anatomy of a common semantic system for words and pictures. Nature, 383(6597), 254–56.Google Scholar
- Wagner, A. D., Paré-Blagoev, E. J., Clark, J., & Poldrack, R. A. (2001). Recovering meaning: left prefrontal cortex guides controlled semantic retrieval. Neuron, 31(2), 329–38.Google Scholar
- Warburton, L. (1999). Management of stroke: A practical guide for the prevention, evaluation and treatment of acute stroke. Journal of Neurology, Neurosurgery, and Psychiatry, 66(5), 696A.Google Scholar
- Waters, G., & Caplan, D. (2002). Working memory and online syntactic processing in Alzheimer’s disease: studies with auditory moving window presentation. Journal of Gerontoly. Series B. Psychology Sciences Social Sciences, 57(4), 298–311.Google Scholar
- Waters, G. S., Rochon, E., & Caplan, D. (1998). Task demands and sentence comprehension in patients with dementia of the Alzheimer’s type. Brain and Language, 62(3), 361–97.Google Scholar
- Weiller, C., Isensee, C., Rijntjes, M., Huber, W., Müller, S., Bier, D., Dutschka, K., Woods, R. P., Noth, J., Diener, H. C. (1995). Recovery from Wernicke’s aphasia: a positron emission tomographic study. Annals of Neurology, 37(6), 723–32.Google Scholar
- Wernicke, C. (1874). Der aphasische Symptomencomplex, eine psychologische Studie auf anatomischer Basis [German]. Breslau: M. Cohn und Weigert.Google Scholar
- Winner, E., & Gardner, H. (1977). The comprehension of metaphor in brain-damaged patients. Brain, 100(4), 717–29.Google Scholar
- Yirmiya, N., Solomonica-Levi, D., & Shulman, C. (1996). The ability to manipulate behaviour and to understand manupulation of beliefs: A comparison of individuals with autism, mental retardation, and normal development. Developmental Psychology, 32, 62–9.Google Scholar
- Zurif, E., Swinney, D., Prather, P., Solomon, J., & Bushell, C. (1993). An on-line analysis of syntactic processing in Broca’s and Wernicke’s aphasia. Brain and Language, 45(3), 448–64.Google Scholar
- Zurif, E. B., & Caramazza, A. (1976). Dissociation of algorithmic and heuristic processes in language comprehension: evidence from aphasia. Brain and Language, 3(4), 572–82.Google Scholar