Advertisement

Zugriff auf Wortbedeutungen

  • Dieter HillertEmail author
Chapter
  • 1.9k Downloads

Zusammenfassung

Wie auf lexikalische Bedeutungen Zugriff genommen wird, hängt von verschiedenen Variablen ab, einschließlich der Eingangsmodalität, morphosyntaktischer Strukturen, perzeptueller Merkmale und Abstraktheitsgrad. Sensorische und kategorienspezifische Störungen können durch Kaskadenprozesse innerhalb eines modalitätsunabhängigen lexikalisch-konzeptuellen Systems vorhergesagt werden. Lexikalische Bedeutungen sind dezentralisiert repräsentiert. Auch wenn die Bedeutung primär perzeptueller Natur ist, konzeptuelle Mediationsprozesse sind offensichtlich stets beim semantischen Zugriff beteiligt. Welche corticalen Areale aktiviert werden, hängt von Berechnungskosten und der Art des mit der lexikalischen Einheit assoziierten Inhalts ab. Die fMRT-Daten verdeutlichen, dass das Broca-Areal dann aktiviert wird, wenn der Zugriff auf idiomatische Phrasen höhere Berechnungskosten erfordert. Weiterhin stellt die „Geschwind-Region“ (Gyrus supramarginalis und Gyrus angularis) die Schaltstelle zwischen präfrontalen und temporookzipitalen Regionen dar und trägt entscheidend zu der Integration multi-sensorischer Erfahrung bei. Diese Region, die aus evolutionärer Sicht relativ jung zu sein scheint, ist vermutlich insbesondere an Prozessen beteiligt, die Aufmerksamkeit und Bewusstsein erfordern.

Stichwörter

Aufmerksamkeit Bewusstsein Geschwind-Region Gyrus angularis Homo Erectus Idiomatische Prozesse Kaskaden Kategorienspezifische Störungen Konzeptuelle Mediation Modalitätsspezifische Störungen Parietallappen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Aggujaro, S., Crepaldi, D., Pistarini, C., Taricco, M., & Luzzatti, C. (2006). Neuroanatomical correlates of impaired retrieval of verbs and nouns: Interaction of grammatical class, imageability and actionality. Journal of Neurolinguistics, 19(3), 175–94.Google Scholar
  2. Ahrens, K, Liu, H. L., Lee, C. Y., Gong, S. P., Fang, S. Y., & Hsu, Y. Y. (2007). Functional MRI of conventional and anomalous metaphors in Mandarin Chinese. Brain and Language, 100, 163–71.Google Scholar
  3. Allport, D. A. (1985). Distributed memory, modular systems and dysphasia. In S. K. Newman & R. Epstein (eds.), Current perspective in dysphasia. Edinburgh: Churchill Livingstone.Google Scholar
  4. Amodio, D. M., & Frith, C.D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–77.Google Scholar
  5. Beauvois, M. F. (1982). Optic aphasia: a process of interaction between vision and language. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298(1089), 35–47.Google Scholar
  6. Beauvois, M. F., Saillant, B., Meininger, V., & Lhermitte, F. (1978). Bilateral tactile aphasia: a tacto-verbal dysfunction. Brain: A Journal of Neurology, 101(3), 381–401.Google Scholar
  7. Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 2767–96.Google Scholar
  8. Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17(1), 353–62.Google Scholar
  9. Bobrow, S. A., & Bell, S. M. (1973). On catching on to idiomatic expressions. Memory & Cognition, 1(3), 343–46.Google Scholar
  10. Bohrn, I. C., Altmann, U., & Jacobs, A. M. (2012). Looking at the brains behind figurative language – a quantitative meta-analysis of neuroimaging studies on metaphor, idiom, and irony processing. Neuropsychologia, 50(11), 2669–83.Google Scholar
  11. Bookheimer, S. (2002). Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annual Review Neuroscience, 25, 151–88.Google Scholar
  12. Bottini, G., Corcoran, R., Sterzi, R., Paulesu, E., Schenone, P., Scarpa, P., Frackowiak, R. S., & Frith, C. D. (1994). The role of the right hemisphere in the interpretation of figurative aspects of language. A positron emission tomography activation study. Brain, 117(6), 1241–53.Google Scholar
  13. Brodmann, K. (1909). Vergleichende Lokalisationslehre der Grosshirnrinde. Leipzig: Johann Ambrosius Bart.Google Scholar
  14. Brownell, H. H., Potter, H. H., Michelow, D., & Gardner, H. (1984). Sensitivity to lexical denotation and connotation in brain-damaged patients: a double dissociation? Brain and Language, 29, 310–321.Google Scholar
  15. Brownell, H. H., Simpson, T. L., Bihrle, A. M., Potter, H. H., & Gardner, H. (1990). Appreciation of metaphoric alternative word meanings by left and right brain-damaged patients. Neuropsychologia, 28(4), 375–383.Google Scholar
  16. Bruner, E. (2004). Geometric morphometrics and paleoneurology: brain shape evolution in the genus Homo. Journal of Human Evolution, 47(5), 279–303. doi:  https://doi.org/10.1016/j.jhevol.2004.03.009.
  17. Brunet, E., Sarfati, Y., Hardy-Bayle, M.-C., & Decety, J. (2000). A PET investigation of the attribution of intentions with a nonverbal task. NeuroImage, 11, 157–166.Google Scholar
  18. Bruner, E. (2010). Morphological differences in the parietal lobes within the human genus: A neurofunctional perspective. Current Anthropology, 51(S1), S77–S88.Google Scholar
  19. Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R. J., Zilles, K., Rizzolatti, G., & Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal of Neuroscience, 13(2), 400–4.Google Scholar
  20. Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: a combined TMS and behavioral study. Brain Research. Cognitive Brain Research, 24(3), 355–63.Google Scholar
  21. Buxbaum, L. J., Vermonti, T., & Schwartz, M. F. (2000). Function andmanipulation tool knowledge in apraxia: knowing “what for”but not “how”. Neurocase, 6, 83–97.Google Scholar
  22. Cacciari, C., & Glucksberg, S. (1991). Understanding idiomatic expressions: The contribution of word meanings. In: G. B. Simpson (ed.), Understanding word and sentence. North-Holland.Google Scholar
  23. Cacciari, C., & Tabossi, P. (1988). The comprehension of idioms. Journal of Memory and Language, 27, 668–83.Google Scholar
  24. Calkins, M. W. (1893). A statistical study of pseudo-chromesthesia and of mental-forms. The American Journal of Psychology, 5(4), 439.Google Scholar
  25. Caplan, D. (2001). Functional neuroimaging studies of syntactic processing. Journal of Psycholinguistic Research, 30, 297–320.Google Scholar
  26. Caplan, D., Alpert, N., & Waters, G. (1998). Effects of syntactic structure and propositional number on patterns of regional cerebral blood flow. Journal of Cognitive Neuroscience, 10, 541–552.Google Scholar
  27. Caramazza, A., Hillis, A. E., Rapp, B. C., & Romani, C. (1990). The multiple semantics hypothesis: Multiple confusions? Cognitive Neuropsychology, 7(3), 161–89.Google Scholar
  28. Caspers, S., Geyer, S., Schleicher, A., Mohlberg, H., Amunts, K., & Zilles, K. (2006). The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. NeuroImage, 33(2), 430–48.Google Scholar
  29. Catani, M., Jones, D. K., & Ffytche, D. H. (2005). Perisylvian language networks of the human brain. Annals of Neurology, 57(1), 8–16.Google Scholar
  30. Copland, D. A., Chenery, H. J., & Murdoch, B. F. (2002). Hemispheric contributions to lexical ambiguity resolution: Evidence from individuals with complex language impairment following left-hemisphere lesions. Brain and Language, 81, 131–43.Google Scholar
  31. Crepaldi, D., Berlingeri, M., & Luzzatti, C. (2013). Clustering the lexicon in the brain: a meta-analysis of the neurofunctional evidence on noun and verb processing. Frontiers in Human Neuroscience, 7, 303.Google Scholar
  32. Cronk, B., Lima, S., & Schweigert, W. (1993). Idioms in sentences: Effects of frequency, literalness, and familiarity. Journal of Psycholinguistic Research, 22(1), 59–81.Google Scholar
  33. Daniele, A., Giustolisi, L., Silveri, M. C., Colosimo, C., & Gainotti, G. (1994). Evidence for a possible neuroanatomical basis for lexical processing of nouns and verbs. Neuropsychologia, 32(11), 1325–41.Google Scholar
  34. Dapretto, M., & Bookheimer, S. Y. (1999). Form and content. Neuron, 24, 427–32.Google Scholar
  35. Dapretto, M., Davies, M. S., Pfeifer, J. H., Scott, A. A., Sigman, M., Bookheimer, S. Y., & Iacoboni, M. (2005). Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders. Nature Neuroscience, 9(1), 28–30.Google Scholar
  36. De Renzi, E., & di Pellegrino, G. (1995). Sparing of verbs and preserved, but ineffectual reading in a patient with impaired word production. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 31(4), 619–36.Google Scholar
  37. Demb, J., Desmond, J., Wagner, A., Vaidya, C., Glover, G., & Gabrieli, J. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: A functional MRI study of task difficulty and process specificity. Journal of Cognitive Neuroscience, 15, 5870–78.Google Scholar
  38. Dronkers, N. F., Wilkins, D. P., Van Valin, R. D., Jr., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92(1–2), 145–77.Google Scholar
  39. Eviatar, Z., & Just, M. A. (2006). Brain correlates of discourse processing: An fMRI investigation of irony and conventional metaphor comprehension. Neuropsychologia, 44, 2348–59.Google Scholar
  40. Farah, M. J., Hammond, K. M., Mehta, Z., & Ratcliff, G. (1989). Category-specificity and modality-specificity in semantic memory. Neuropsychologia, 27(2), 193–200.Google Scholar
  41. Fogassi, L. (2005). Parietal lobe: From action organization to intention understanding. Science, 308(5722), 662–67.Google Scholar
  42. Foldi, N. S. (1987). Appreciation of pragmatic interpretations of indirect commands. Brain and Language, 31, 88–108.Google Scholar
  43. Frattali, C., Hanna, R., McGinty, A. S., Gerber, L., Wesley, R., Grafman, J., & Coelho, C. (2007). Effect of prefrontal cortex damage on resolving lexical ambiguity in text. Brain and Language, 102, 99–113.Google Scholar
  44. Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6(2), 78–84.Google Scholar
  45. Frith, U., & Frith, C. D. (2003). Development and neurophysiology of mentalizing. Philosophical Transactions of the Royal Society B: Biological Sciences, 358(1431), 459–73.Google Scholar
  46. Gallagher, H. L., Happé, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia, 38(1), 11–21.Google Scholar
  47. Gallese, V. (2003). The Roots of Empathy: The shared manifold hypothesis and the neural basis of intersubjectivity. Psychopathology, 36(4), 171–80.Google Scholar
  48. Gallese, V. (2007). Before and below “theory of mind”: embodied simulation and the neural correlates of social cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1480), 659–69.Google Scholar
  49. Gardner, H., & Brownell, H. H. (1986.). Right hemisphere communication battery. Boston, MA: Psychological Service VAMC.Google Scholar
  50. Gibbs, R. W., Jr. (1980). Spilling the beans on understanding and memory for idioms in conversation. Memory & Cognition, 8(2), 149–56.Google Scholar
  51. Gilbert, S. J., Williamson, I. D. M., Dumontheil, I., Simons, J. S., Frith, C. D., & Burgess, P. W. (2007). Distinct regions of medial rostral prefrontal cortex supporting social and non-social functions. Social Cognitive and Affective Neuroscience, 2, 217–26.Google Scholar
  52. Gilbert, S. J., Spengler, S., Simons, J. S., Steele, J. D., Lawrie, S. M., Frith, C. D., & Burgess, P. W. (2006). Functional specialization within rostral prefrontal cortex (area 10): a meta- analysis. Journal of Cognitive Neuroscience, 18, 932–48.Google Scholar
  53. Giora, R. (1997). Understanding figurative language: The graded salience hypothesis. Cognitive Linguistics, 7(1), 183–206.Google Scholar
  54. Gitelman, D. R., Nobre, A. C., Sonty, S., Parrish, T. B., & Mesulam, M.-M. (2005). Language network specializations: An analysis with parallel task designs and functional magnetic resonance imaging. NeuroImage, 26(4), 975–85.Google Scholar
  55. Goldenberg, G. (2003). Apraxia and beyond: life and work of Hugo Liepmann. Cortex 39(3), 509–24.Google Scholar
  56. Goodglass, H. (1994). Category-specific lexical dissociations. Linguistische Berichte. Special Issue: Linguistics and Cognitive Neuroscience, 6, 49–61.Google Scholar
  57. Grice, H. P. (1975). Logic and conversation. In: P. Cole & J. L. Morgan (eds.), Syntax and Semantics 3: Speech Acts. New York: Academic Press, pp. 41–58.Google Scholar
  58. Grodzinsky, Y. (2000). The neurology of syntax: Language use without Broca’s area. Behavioral and Brain Science, 23, 1–71.Google Scholar
  59. Grodzinsky, Y., & Santi, A. (2008). The battle for Broca’s region. Trends in Cognitive Science, 12, 474–80.Google Scholar
  60. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4259–64.Google Scholar
  61. Hart, J., & Gordon, B. (1992). Neural subsystems for object knowledge. Nature, 359(6390), 60–4.Google Scholar
  62. Hart, J., Berndt, R. S., & Caramazza, A. (1985). Category-specific naming deficit following cerebral infarction. Nature, 316(6027), 439–40.Google Scholar
  63. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393–402.Google Scholar
  64. Hillert, D. (1990). Sprachprozesse und Wissensstrukturen [German]. Opladen: Westdeutscher Press.Google Scholar
  65. Hillert, D. (1992). Lexical semantics and aphasia: A state-of-the-art review. Journal of Neurolinguistics, 7(1), 1–43.Google Scholar
  66. Hillert, D., Burrington, D. F. H., & Gupta, G. A. (1994). Semantic activation for lexical perception. Linguistische Berichte (4): Linguistics and Cognitive Neuroscience, 245–68.Google Scholar
  67. Hillert, D., & Buračas, G. (2009). The neural substrates of spoken idiom comprehension. Language and Cognitive Processes, 24(9), 1370–91.Google Scholar
  68. Hillert, D., & Swinney, D. (2000). The processing of fixed expressions during sentence comprehension. In A. Cienki, B. J. Luka & M. B. Smith (eds.), Conceptual structure, discourse, and language. Stanford: CSLI.Google Scholar
  69. Hillert, D. G. (2004). Spared idiom comprehension in aphasia: A single-case approach. Brain and Language 89 (1), 207–15.Google Scholar
  70. Hillert, D. G. (2008). On Idioms: Cornerstones of a neurological model of language processing. Journal of Cognitive Science 9(2), 193–233.Google Scholar
  71. Hillert, D. G. (2011). Nimm’s nicht so wörtlich [German]. Gehirn und Geist, Nov., 70–3.Google Scholar
  72. Hubbard, E. M., Arman, A. C., Ramachandran, V. S., & Boynton, G. M. (2005). Individual differences among grapheme-color synesthetes: Brain-behavior correlations. Neuron, 45(6), 975–85.Google Scholar
  73. Humphreys, G. W., Hodsoll, J., & Riddoch, M. J. (2009). Fractionating the binding process: neuropsychological evidence from reversed search efficiencies. Journal of Experimental Psychology. Human Perception and Performance, 35(3), 627–47.Google Scholar
  74. Humphreys, G. W., Riddoch, M. J., & Price, C. J. (1997). Top-down processes in object identification: evidence from experimental psychology, neuropsychology and functional anatomy. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 352(1358), 1275–82.Google Scholar
  75. Humphreys, G. W., Riddoch, M. J., & Quinlan, P. T. (1988). Cascade processes in picture identification. Cognitive Neuropsychology, 5(1), 67–104.Google Scholar
  76. Husain, M., & Nachev, P. (2007). Space and the parietal cortex. Trends in Cognitive Sciences, 11(1), 30–6.Google Scholar
  77. Joanette, Y., Goulet, P., & Hannequin, D. (1990). Right hemisphere and verbal communication. Springer Press.Google Scholar
  78. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127(8), 1811–21.Google Scholar
  79. Kaan, E., & Swaab, T. Y. (2002). The brain circuitry of syntactic comprehension. Trends in Cognitive Science, 6, 350–56.Google Scholar
  80. Kempler, D., Van Lancker, D., & Read, S. (1988). Proverb and idiom comprehension in Alzheimer disease. Alzheimer Disease and Associated Disorders, 2(1), 38–49.Google Scholar
  81. Kircher, T. T., Brammer, M., Tous Andreu, N., Williams, S. C., & McGuire, P. K. (2001). Engagement of right temporal cortex during processing of linguistic context. Neuropsychologia, 39(8), 798–809.Google Scholar
  82. Köhler, W. (1929). Gestalt psychology. New York: Liveright.Google Scholar
  83. Kringelbach, M. L. (2005). The orbitofrontal cortex: linking reward to hedonic experience. Nature Reviews Neuroscience, 6, 691–702.Google Scholar
  84. Lauro, L. J. R., Tettamanti, M., Cappa, S. F., & Papagno, C. (2008). Idiom comprehension: A prefrontal task? Cerebral Cortex, 18, 162–70.Google Scholar
  85. Lee, L., Friston, K., & Horwitz, B. (2006). Large-scale neural models and dynamic causal modelling. NeuroImage, 30(4), 1243–54.Google Scholar
  86. Lee, S. S., & Dapretto, M. (2006). Metaphorical vs. literal word meanings: fMRI evidence against a selective role of the right hemisphere. Neuroimage, 29(2), 536–44.Google Scholar
  87. Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech production. The Behavioral and Brain Sciences, 22(1), 1–38.Google Scholar
  88. Libon, D. J., Rascovsky, K., Powers, J., Irwin, D. J., Boller, A., Weinberg, D., McMillan, C. T., & Grossman, M. (2013). Comparative semantic profiles in semantic dementia and Alzheimer’s disease. Brain, 136(8), 2497–509.Google Scholar
  89. Liepmann, H. (1905). Ueber Störungen des Handelns bei Gehirnkranken. S. Karger.Google Scholar
  90. Macrae, C. N., Moran, J. M., Heatherton, T. F., Banfield, J. F., & Kelley, W. M. (2004). Medial Prefrontal Activity Predicts Memory for Self. Cerebral Cortex, 14, 647–54.Google Scholar
  91. Mahon, B. Z., & Caramazza, A. (2008). A critical look at the embodied cognition hypothesis and a new proposal for grounding conceptual content. Journal of Physiology, Paris, 102(1–3), 59–70.Google Scholar
  92. Marques, J. F., Raposo, A., & Almeida, J. (2013). Structural processing and category-specific deficits. Cortex, 49(1), 266–275.Google Scholar
  93. Martin, A., Ungerleider, L. G., & Haxby, J. V. (2000). Category-specificity and the brain: the sensory-motor model of semantic representations of objects. In M. S. Gazzaniga (ed.), The new cognitive neurosciences. Cambridge, MA: MIT Press, pp. 1023–36.Google Scholar
  94. Martin, A., Wiggs, C. L., Ungerleider, L. G., & Haxby, J. V. (1996). Neural correlates of category- specific knowledge. Nature, 379(6566), 649–52.Google Scholar
  95. Mashal, N., Faust, M., & Hendler, T. (2005). The role of the right hemisphere in processing nonsalient metaphorical meanings: application of principal components analysis to fMRI data. Neuropsychologia, 43(14), 2084–100.Google Scholar
  96. Mashal, N., Faust, M., Hendler, T., & Jung-Beeman, M. (2008). Hemispheric differences in processing the literal interpretation of idioms: converging evidence from behavioral and fMRI studies. Cortex, 44(7), 848–60.Google Scholar
  97. Mason, R. A., & Just, M. A. (2007). Lexical ambiguity in sentence comprehension. Brain Research, 1146(18), 115–27.Google Scholar
  98. Mason, R. A., Just, M. A., Keller, T. A., & Carpenter, P. A. (2003). Ambiguity in the brain: What brain imaging reveals about the processing of syntactically implicit sentences. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(6), 1319–38.Google Scholar
  99. Maurer, D., Pathman, T., & Mondloch, C. J. (2006). The shape of boubas: sound-shape correspondences in toddlers and adults. Developmental Science, 9(3), 316–22.Google Scholar
  100. McCarthy, R., & Warrington, E. K. (1985). Category specificity in an agrammatic patient: the relative impairment of verb retrieval and comprehension. Neuropsychologia, 23(6), 709–27.Google Scholar
  101. McCarthy, R. A., & Warrington, E. K. (1988). Evidence for modality-specific meaning systems in the brain. Nature, 334(6181), 428–30.Google Scholar
  102. McCarthy, R. A., & Warrington, E. K. (1994). Disorders of semantic memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 346(1315), 89–96.Google Scholar
  103. McGlone, M., Glucksberg, S., & Cacciari, C. (1994). Semantic productivity and idiom comprehension. Discourse Processes, 17, 167–90.Google Scholar
  104. Miller, E. K. (1999). The prefrontal cortex: complex neural properties for complex behavior. Neuron, 22, 15–7.Google Scholar
  105. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal function. Annual Review of Neuroscience, 24, 167–202.Google Scholar
  106. Miller, E. K., Freedman, D. J., & Wallis, J. D. (2002). The prefrontal cortex: categories, concepts and cognition. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 29, 357(1424), 1123–36.Google Scholar
  107. Nichelli, P., Grafman, J., Pietrini, P., Clark, K., Lee, K. Y., & Miletich, R. (1995). Where the brain appreciates the moral of a story. Neuroreport, 6(17), 2309–13.Google Scholar
  108. Nunn, J. A., Gregory, L. J., Brammer, M., Williams, S. C. R., Parslow, D. M., Morgan, M. J., Morris, R. G., Bullmore, E. T., Baron-Cohen, S., & Gray, J. A. (2002). Functional magnetic resonance imaging of synesthesia: activation of V4/V8 by spoken words. Nature Neuroscience, 5(4), 371–75.Google Scholar
  109. Oberman, L. M., Pineda, J. A., & Ramachandran, V. S. (2007). The human mirror neuron system: A link between action observation and social skills. Social Cognitive and Affective Neuroscience, 2(1), 62–6.Google Scholar
  110. Oliveri, M., Finocchiaro, C., Shapiro, K., Gangitano, M., Caramazza, A., & Pascual-Leone, A. (2004). All talk and no action: a transcranial magnetic stimulation study of motor cortex activation during action word production. Journal of Cognitive Neuroscience, 16(3), 374–81.Google Scholar
  111. Oliveri, M., Romero, L., & Papagno, C. (2004). Left but not right temporal involvement in opaque idiom comprehension: a repetitive transcranial magnetic stimulation study. Journal of Cognitive Neuroscience, 16, 848–55.Google Scholar
  112. Orban, G. A., Claeys, K., Nelissen, K., Smans, R., Sunaert, S., Todd, J. T., Wardak, C., Durand, J. B., & Vanduffel, W. (2006). Mapping the parietal cortex of human and non-human primates. Neuropsychologia, 44(13), 2647–67.Google Scholar
  113. Ortony, A., Schallert, D. L., Reynolds, R. E., & Antos, S. J. (1978). Interpreting metaphors and idioms: some effects of context on comprehension. Journal of Verbal Learning and Verbal Behavior, 17, 465–77.Google Scholar
  114. Papagno, C., & Caporali, A. (2007). Testing idiom comprehension in aphasic patients: The effects of task and idiom type. Brain and Language, 100(2), 208–20.Google Scholar
  115. Papagno, C., Curti R., Rizzo, S., Crippa, F., & Colombo, M. R. (2006). Is the right hemisphere involved in idiom comprehension? A neuropsychological study. Neuropsychology, 20(5), 598–606.Google Scholar
  116. Papagno, C., Oliveri, M., & Romero, L. (2002). Neural correlates of idiom comprehension. Cortex, 38, 895–98.Google Scholar
  117. Patterson, K., Nestor, P. J., & Rogers, T. T. (2007). Where do you know what you know? The representation of semantic knowledge in the human brain. Nature Reviews Neuroscience, 8(12), 976–87.Google Scholar
  118. Paul, L., Van Lancker-Sidtis, D. R., Schieffer, B., Dietrich, R., & Brown, W. (2003). Communicative deficits in agenesis of the corpus callosum: Nonliteral language and affective prosody. Brain and Language, 85, 313–24.Google Scholar
  119. Perani, D., Cappa, S. F., Bettinardi, V., Bressi, S., Gorno-Tempini, M., Matarrese, M., & Fazio, F. (1995). Different neural systems for the recognition of animals and man-made tools. Neuroreport, 6(12), 1637–41.Google Scholar
  120. Peterson, R. R., & Burgess, C. (1993). Syntactic and semantic processing during idiom comprehension: neurolinguistic and psycholinguistic dissociation. In C. Cacciari & P. Tabossi (eds.), Idioms: processing, structure and interpretation. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  121. Peterson, R. R., Burgess, C., Dell, G. S., & Eberhard, K. M. (2001). Dissociation between syntactic and semantic processing during idiom comprehension. Journal of Experimental Psychology: Learning, Memory and Cognition, 27(5), 1223–1237.Google Scholar
  122. Pineda, J. A. (ed.) (2009). Mirror neuron systems – The role of mirroring processes in social cognition. Springer.Google Scholar
  123. Poldrack, R. A., Wagner, A. D., Prull, M. W., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1999). Functional specialization for semantic and phonological processing in the left inferior prefrontal cortex. Neuroimage, 10(1), 15–35.Google Scholar
  124. Pulvermüller, F., Hauk, O., Nikulin, V. V., & Ilmoniemi, R. J. (2005). Functional links between motor and language systems. The European Journal of Neuroscience, 21(3), 793–97.Google Scholar
  125. Ramachandran, V. S., & Hubbard, E. M. (2001). Synaesthesia – a window into perception, thought and language. Journal of Consciousness Studies, 8(12), 3–34.Google Scholar
  126. Rapp, A. M., Leube, D. T., Erb, M., Grodd, W., & Kircher, T. T. (2004). Neural correlates of metaphor processing. Brain Research. Cognitive Brain Research, 20, 395–402.Google Scholar
  127. Rapp, A. M., Mutschler, D. E., & Erb, M. (2012). Where in the brain is nonliteral language? A coordinate-based meta-analysis of functional magnetic resonance imaging studies. NeuroImage, 63(1), 600–10.Google Scholar
  128. Riddoch, M. J., Humphreys, G. W., Coltheart, M., & Funnell, E. (1988). Semantic systems or system? Neuropsychological evidence re-examined. Cognitive Neuropsychology, 5, 3–25.Google Scholar
  129. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–92.Google Scholar
  130. Roskies, A. L., Fiez, J. A., Balota, D. A., Raichle, M. E., & Petersen, S. E. (2001). Task-dependent modulation of regions in the left inferior frontal cortex during semantic processing. Journal of Cognitive Neuroscience, 13(6), 829–43.Google Scholar
  131. Sahin, N. T., Pinker, S., Cash, S. S., Schomer, D., & Halgren, E. (2009). Sequential processing of lexical, grammatical, and phonological information within Broca’s area. Science, 326(5951), 445–49.Google Scholar
  132. Shallice, T. (1987). Impairments of semantic processing: multiple dissociations. In M. Coltheart, G. Sartori & R. Job (eds.), The cognitive neuropsychology of language. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  133. Shibata, M., Toyomura, A., Itoh, H., & Abe, J. (2010). Neural substrates of irony comprehension: A functional MRI study. Brain Research, 1308, 114–23.Google Scholar
  134. Sotillo, M., Carretie, L., Hinojosa, J. A., Tapia, M., Mercado, F., Lopez-Martin, S., & Albert, J. (2005). Neural activity associated with metaphor comprehension: spatial analysis. Neuroscience Letters, 373(1), 5–9.Google Scholar
  135. Sperber, D., & Wilson, D. (2001). Précis of relevance: communication and cognition. Behavioral and Brain Sciences, 10(4), 697–754.Google Scholar
  136. Stowe, L. A., Broere, C. A. J., Paans, A. M. J., Wijers, A. A., Mulder, G., Vaalburg, W., & Zwarts, F. (1998). Localizing components of a complex task: sentence processing and working memory. Neuroreport, 9(13), 2995–99.Google Scholar
  137. Stringaris, A. K., Medford, N. C., Giampietro, V., Brammer, M. J., & David, A. S. (2007). Deriving meaning: Distinct neural mechanisms for metaphoric, literal, and non-meaningful sentences. Brain and Language, 100, 150–62.Google Scholar
  138. Subramaniam, K., Beeman, M., & Mashal, N. (2013). Positively valenced stimuli facilitate creative novel metaphoric processes by enhancing medial prefrontal cortical activation. Frontiers in Cognitive Science, 4, 211.Google Scholar
  139. Swinney, D., & Cutler, A. (1979). The access and processing of idiomatic expressions. Journal of Verbal Learning and Verbal Behavior, 18, 523–34.Google Scholar
  140. Tabossi, P., & Zardon, F. (1993). The activation of idiomatic meaning in spoken language comprehension. In C. Cacciari & P. Tabossi (eds.), Idioms: Processing, structure and interpretation. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  141. Tabossi, P., & Zardon, F. (1995). The activation of idiomatic meaning. In M. Everaert, E.-J. van der Linden, A. Schenk & R. Schreuder (eds.), Idioms: structural and psychological perspectives. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
  142. Titone, D. A., & Connine, C. M. (1994). Comprehension of idiomatic expressions: effects of predictability and literality. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(5), 1126–1138.Google Scholar
  143. Tompkins, C. A., Boada, R., & McGarry, K. (1992). The access and processing of familiar idioms by brain-damaged and normally aging adults. Journal of Speech, Language and Hearing Research, 35(3), 626–637.Google Scholar
  144. Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5(1).Google Scholar
  145. Uchiyama, H., Seki, A., Kageyama, H., Saito, D. N., Koeda, T., Ohno, K., & Sadato, N. (2006). Neural substrates of sarcasm: A functional magnetic-resonance imaging study. Brain Research, 1124(1): 100–10.Google Scholar
  146. Van Lancker, D. R., & Kempler, D. (1987). Comprehension of familiar phrases by left- but not by right-hemisphere damaged patients. Brain and Language, 32, 265–77.Google Scholar
  147. Van Lancker-Sidtis, D. (2004). When novel sentences spoken or heard for the first time in the history of the universe are not enough: toward a dual-process model of language. International Journal of Language and Communicative Disorders, 39(1): 1–44.Google Scholar
  148. Wagner, A., Desmond, J., Demb, J., Glover, G., & Gabrieli, J. D. (1997). Semantic repetition priming for verbal and pictorial knowledge. Journal of Cognitive Neuroscience, 9, 714–726.Google Scholar
  149. Wakusawa, K., Sugiura, M., Sassa, Y., Jeong, H., Horie, K., Sato, S., Yokoyama, H., Tsuchiya, S., Inuma, K., & Kawashima, R. (2007). Comprehension of implicit meanings in social situations involving irony: a functional MRI study. Neuroimage, 37(4), 1417–26.Google Scholar
  150. Warrington, E. K., & Shallice, T. (1984). Category specific semantic impairments. Brain, 107(3), 829–54.Google Scholar
  151. Winner, E., & Gardner, H. (1977). The comprehension of metaphor in brain-damaged patients. Brain, 100, 719–27.Google Scholar
  152. Winner, E. (1988). The point of words: Children’s understanding of metaphor and irony. Cambridge, MA: Harvard University Press.Google Scholar
  153. Worsley, K. J., Evans, A. C., Marrett, S., & Neelin, P. (1992). A three-dimensional statistical analysis for CBF activation studies in human brain. Journal of Cerebral Blood Flow and Metabolism, 12, 900–18.Google Scholar
  154. Zempleni, M. Z., Haverkort, M., Renken, R., & Stowe, L. A. (2007). Evidence for bilateral involvement in idiom comprehension: An fMRI study. Neuroimage, 34(3), 1280–91.Google Scholar
  155. Zempleni, M. Z., Renken, R., Hoeks, C. J., Hoogduin, J. M., & Stowe, L. A. (2007). Semantic ambiguity processing in sentence context: Evidence from event-related fMRI. Neuroimage, 34, 1270–79.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.School of MedicineUniversity of California, San DiegoSan Diego, La JollaUSA

Personalised recommendations