Advertisement

Generierung von Sätzen

  • Dieter HillertEmail author
Chapter
  • 1.9k Downloads

Zusammenfassung

Obwohl Bildgebungsverfahren und elektrophysiologische Methoden eine genauere Bestimmung der mit der Satzverarbeitung verbundenen neuronalen Korrelate ermöglichen, gibt es methodologische Probleme, die bei der Interpretation von Studienergebnissen zu berücksichtigen sind. Einige kritische Faktoren beziehen sich auf die zu prüfende Satzstruktur und auf die Anforderungen der Aufgabenstellung. Zudem spielen bei der Satzverarbeitung Funktionen des Arbeitsspeichers eine wichtige Rolle. Schließlich gibt es auch kritische Argumente gegen die statistische Analyse der mit Bildgebungsverfahren gewonnenen Daten. Wir können jedoch feststellen, dass insbesondere das Broca-Areal (BA 44, 45), der linke supplementär-motorische Cortex und der prämotorische Cortex bei der komplexen Satzverarbeitung beteiligt sind. Diese mentalen Berechnungen involvieren ebenso die Verarbeitung von syntaktischen Dependenzen. Die Ergebnisse zur komplexen syntaktischen Verarbeitung sind mit den Daten kompatibel, die zeigen, dass Arbeitsspeicherfunktionen, einschließlich Rehearsal- Prozessen, verschiedene Regionen im präfrontalen Cortex aktivieren. Die Interpretation von Satzbedeutungen scheint demgegenüber insbesondere den linken (aber manchmal auch den rechten) Gyrus temporalis superior und den Gyrus temporalis medius sowie die parietalen Regionen, einschließlich des Gyrus angularis, zu involvieren.

Stichwörter

Arbeitsspeicher Broca-Areal Frontotemporale Schaltkreise Hierarchische Strukturen Präfrontaler Cortex Satzverarbeitung Semantische Integration Syntaktische Komplexität Syntaktische Dependenzen Temporallappen 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Amunts, K., Lenzen, M., Friederici, A. D., Schleicher, A., Morosan, P., Palomero-Gallagher, N., & Zilles, K. (2010). Broca’s region: Novel organizational principles and multiple receptor mapping. PLoS Biology, 8(9). doi:  https://doi.org/10.1371/journal.pbio.1000489.
  2. Anwander, A., Tittgemeyer, M., von Cramon, D. Y., Friederici, A. D., & Knösche, T. R. (2007). Connectivity-Based Parcellation of Broca’s Area. Cerebral Cortex, 17(4), 816–25.Google Scholar
  3. Assadollahi, R., & Rockstroh, B. S. (2008). Representation of the verb’s argument-structure in the human brain. BMC Neuroscience, 9, 69.Google Scholar
  4. Ben-Shachar, M., Palti, D., & Grodzinsky, Y. (2004). Neural correlates of syntactic movement: converging evidence from two fMRI experiments. NeuroImage, 21(4), 1320–36.Google Scholar
  5. Bilenko, N. Y., Grindrod, C. M., Myers, E. B., & Blumstein, S. E. (2009). Neural correlates of semantic competition during processing of ambiguous words. Journal of Cognitive Neuroscience, 21(5), 960–75.Google Scholar
  6. Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. The Journal of Neuroscience, 17(1), 353–62.Google Scholar
  7. Bookheimer, S. (2002). Functional MRI of language: new approaches to understanding the cortical organization of semantic processing. Annual Review Neuroscience, 25, 151–88.Google Scholar
  8. Brysbaert, M., & Mitchell, D. C. (1996). Modifier attachment in sentence processing: Evidence from Dutch. Quarterly Journal of Experimental Psychology, 49A, 664–69.Google Scholar
  9. Burton, M. (2001). The role of inferior frontal cortex in phonological processing. Cognitive Science, 25, 695–709.Google Scholar
  10. Capeza, R., & Nyberg, L. (2000). Neural bases of learning and memory: functional neuroimaging evidence. Current Opinion in Neurology, 4, 415–21.Google Scholar
  11. Caplan, D., Chen, E., & Waters, G. (2008). Task-dependent and task-independent neurovascular responses to syntactic processing. Cortex, 44(3), 257–75.Google Scholar
  12. Caplan, D., Alpert, N., & Waters, G. (1998). Effects of syntactic structure and propositional number on patterns of regional cerebral blood flow. Journal of Cognitive Neuroscience, 10(4), 541–52.Google Scholar
  13. Chein, J. M., Ravizza, S. M., & Fiez, J. A. (2003). Using neuroimaging to evaluate models of working memory and their implications for language processing. Journal of Neurolinguistics, 16(4–5), 315–39.Google Scholar
  14. Chen, E., West, W. C., Waters, G., & Caplan, D. (2006). Determinants of bold signal correlates of processing object-extracted relative clauses. Cortex, 42(4), 591–604.Google Scholar
  15. Chomsky, N. (1986). Knowledge of language: Its nature, origin, and use. New York: Praeger.Google Scholar
  16. Chomsky, N. (1981). Lectures on government and binding. Dordrecht, Holland: Foris Publications.Google Scholar
  17. Cohen D. (1968). Magnetoencephalography: Evidence of magnetic fields produced by alpha rhythm currents. Science, 161, 784–786.Google Scholar
  18. Cuetos, F., & Mitchell, D. C. (1988). Cross-linguistic differences in parsing: restrictions on the use of the Late Closure strategy in Spanish. Cognition, 30(1), 73–105.Google Scholar
  19. Dapretto, M., & Bookheimer, S. Y. (1999). Form and content: dissociating syntax and semantics in sentence comprehension. Neuron, 24, 427–32.Google Scholar
  20. Demb, J. B., Desmond, J. E., Wagner, A. D., Vaidya, C. J., Glover, G. H., & Gabrieli, J. D. (1995). Semantic encoding and retrieval in the left inferior prefrontal cortex: a functional MRI study of task difficulty and process specificity. The Journal of Neuroscience, 15(9), 5870–78.Google Scholar
  21. Démonet, J.-F., Chollet, F., Ramsay, S., Cardebat, D., Nespoulous, J.-L., Wise, R., Rascol, A., & Frackowiak, R. (1992). The anatomy of phonological and semantic processing in normal subjects. Brain, 115(6), 1753–68.Google Scholar
  22. Desmet, T., De, B. C., & Brysbaert, M. (2002). The influence of referential discourse context on modifier attachment in Dutch. Memory & Cognition, 30(1), 150–7.Google Scholar
  23. Devauchelle, A.-D., Oppenheim, C., Rizzi, L., Dehaene, S., & Pallier, C. (2009). Sentence syntax and content in the human temporal lobe: an fMRI adaptation study in auditory and visual modalities. Journal of Cognitive Neuroscience, 21(5), 1000–12.Google Scholar
  24. Dronkers, N. F., Wilkins, D. P., Redfem, B. B., Van Valin, J. R., & Jaeger, J. J. (1994). A reconsideration of the brain areas involved in the disruption of morphosyntactic comprehension. Brain and Language, 47, 461–63.Google Scholar
  25. Embick, D., Marantz, A., Miyashita, Y., O’Neil, W., & Sakai, K. L. (2000). A syntactic specialization in Broca’s area. Proceedings of the National Academy of Science, 97(11), 65150–4.Google Scholar
  26. Felser, C., Marinis, T., & Clahsen, H. (2003). Children’s processing of ambiguous sentences: A study of relative clause attachment. Language Acquisition, 11(3), 127–163.Google Scholar
  27. Fiebach, C. J., & Schubotz, R. I. (2006). Dynamic anticipatory processing of hierarchical sequential events: a common role for Broca’s area and ventral premotor cortex across domains? Cortex, 42(4), 499–502.Google Scholar
  28. Fiez, J. A. (1997). Phonology, semantics, and the role of the left inferior prefrontal cortex. Human Brain Mapping, 5(2), 79–83.Google Scholar
  29. Ford, M. (1983). A method for obtaining measures of local parsing complexity throughout sentences. Journal of Verbal Learning and Verbal Behavior, 22(2), 203–18.Google Scholar
  30. Frazier, L., & Fodor, J. D. (1978). The sausage machine: A new two-stage parsing model. Cognition, 6, 291–325.Google Scholar
  31. Frazier, L., & Clifton, C. (1997). Construal: Overview, motivation, and some new evidence. Journal of Psycholinguistic Research, 26(3), 277–95.Google Scholar
  32. Frazier, L. (1979). On comprehending sentences: Syntactic parsing strategies. Bloomington, Indiana: Indiana University Linguistics Club.Google Scholar
  33. Frazier, L. (1987). Structure in auditory word recognition. Cognition, 25(1–2), 416–22.Google Scholar
  34. Gabrieli, J. D. E., Desmond, J. E., Demb, J. B., Wagner, A. D., Stone, M. V., Vaidya, C. J., & Glover, G. H. (1996). Functional magnetic resonance imaging of semantic memory processes in the frontal lobes. Psychological Science, 7(5), 278–83.Google Scholar
  35. Gibson, E. (1998). Syntactic complexity: locality of syntactic dependencies. Cognition, 68(1), 1–76.Google Scholar
  36. Goodglass, H. (1993). Understanding aphasia. San Diego, CA: Academic Press.Google Scholar
  37. Herdener, M., Humbel, T., Esposito, F., Habermeyer, B., Cattapan-Ludewig, K., & Seifritz, E. (2012). Jazz drummers recruit language-specific areas for the processing of rhythmic structure. Cerebral Cortex (ePrint Nov. 25).Google Scholar
  38. Hillert, D., & Buračas, G. (2009). The neural substrates of spoken idiom comprehension. Language and Cognitive Processes, 24(9), 1370–91.Google Scholar
  39. Hillert, D. (1990). Sprachprozesse und Wissensstrukturen: Neuropsychologische Grundlagen der Kognition [German]. Opladen, Germany: Westdeutscher Verlag.Google Scholar
  40. Hillert, D. (ed. 1994). Linguistics and cognitive neuroscience. Linguistische Berichte, Special Issue 4. Opladen, Germany: Westdeutscher Verlag.Google Scholar
  41. Holmes, V. N., & O’Regan, J. K. (1981). Eye fixation patterns during the reading of relative clause sentences. Journal of Verbal Learning and Verbal Behavior, 20, 417–30.Google Scholar
  42. Iacoboni, M., Woods, R. P., Brass, M., Bekkering, H., Mazziotta, J. C., & Rizzolatti, G. (1999). Cortical mechanisms of human imitation. Science, 286, 2526–8.Google Scholar
  43. Just, M. A., Carpenter, P. A., Keller, T. A., Eddy, W. F., & Thulborn, K. R. (1996). Brain activation modulated by sentence comprehension. Science, 274(5284), 114–116.Google Scholar
  44. King, J., & Just, M. A. (1991). Individual differences in syntactic processing: The role of working memory. Journal of Memory and Language, 30, 580–602.Google Scholar
  45. Kang, A. M., Constable, R. T., Gore, J. C., & Avrutin, S. (1999). An event-related fMRI study of implicit phrase-level syntactic and semantic processing. Neuroimage, 10(5), 555–61.Google Scholar
  46. Kimball, J. (1973). Seven principles of surface structure parsing in natural language. Cognition, 2, 15–47.Google Scholar
  47. Makuuchi, M., Bahlmann, J., Anwander, A., & Friederici, A. D. (2007). Segregating the core computational faculty of human language from working memory. Proceedings of the National Academy of Science, 106(20), 8362–7.Google Scholar
  48. Mazoyer, B. M., Tzourio, N., Frak, V., Syrota, A., Murayama, N., Levrier, O., Salamon, G., Dehaene, S., Cohen, L., & Mehler, J. (1993). The cortical representation of speech. Journal of Cognitive Neuroscience, 5(4), 467–79.Google Scholar
  49. Meltzer, J. A., McArdle, J. J., Schafer, R. J., & Braun, A. R. (2010). Neural Aspects of Sentence Comprehension: Syntactic Complexity, Reversibility, and Reanalysis. Cerebral Cortex, 20(8), 1853–1864. doi:  https://doi.org/10.1093/cercor/bhp249.
  50. Meyer, M., Friederici, A. D., & von Cramon, D. Y. (2000). Neurocognition of auditory sentence comprehension: event related fMRI reveals sensitivity to syntactic violations and task demands. Brain Research. Cognitive Brain Research, 9(1), 19–33.Google Scholar
  51. Meyer, L., Obleser, J., & Friederici, A. D. (2013). Left parietal alpha enhancement during working memory-intensive sentence processing. Cortex, 49(3), 711–21.Google Scholar
  52. Miller, G. A., & Chomsky, N. (1963). Finitary models of language users’. In R. D. Luce,,R. R. Bush & E. Galanter (eds.), Handbook of Mathematical Psychology, (vol. II). New York, NY: Wiley: 419–491.Google Scholar
  53. Moro, A., Tettamanti, M., Perani, D., Donati, C., Cappa, S. F., & Fazio F. (2001). Syntax and the brain: disentangling grammar by selective anomalies. NeuroImage, 13(1), 110–18.Google Scholar
  54. Musso, M., Moro, A., Glauche, V., Rijntjes, M., Reichenbach, J., Buechel, C., & Weiller, C. (2003). Broca’s area and the language instinct. Nature Neuroscience, 6, 774–81.Google Scholar
  55. Newman, S. D., Just, M. A., Keller, T. A., Roth, J., & Carpenter, P. A. (2003). Differential effects of syntactic and semantic processing on the subregions of Broca’s area. Cognitive Brain Research, 16(2), 297–307.Google Scholar
  56. Nicol, J., & Swinney, D. (1989). The role of structure in coreference assignment during sentence comprehension. Journal of Psycholinguistic Research, 18(1), 5–19.Google Scholar
  57. Obleser, J., & Kotz, S. A. (2010). Expectancy constraints in degraded speech modulate the language comprehension network. Cerebral Cortex, 20(3), 633–40.Google Scholar
  58. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13(1), 25–42.Google Scholar
  59. Prabhakaran, V., Narayanan, K., Zhao, Z., & Gabrieli, J. D. E. (2000). Integration of diverse information in working memory within the frontal lobe. Nature Neuroscience, 3(1), 85–90.Google Scholar
  60. Price, C. J. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences, 1191, 62–88.Google Scholar
  61. Richardson, F. M., Thomas, M. S. C., & Price, C. J. (2010). Neuronal activation for semantically reversible sentences. Journal of Cognitive Neuroscience, 22(6), 1283–98.Google Scholar
  62. Rogalsky, C., & Hickok, G. (2009). Selective attention to semantic and syntactic features modulates sentence processing networks in anterior temporal cortex. Cerebral Cortex, 19(4), 786–96.Google Scholar
  63. Smith, E. E., & Jonides, J. (1998). Neuroimaging analyses of human working memory. Proceedings of the National Academy of Sciences of the USA, 95(20), 12061–68.Google Scholar
  64. Stromswold, K., Caplan, D., Alpert, N., & Rauch, S. (1996). Localization of syntactic comprehension by positron emission tomography. Brain and Language, 52(3), 452–73.Google Scholar
  65. Tettamanti, M., Rotondi, I., Perani, D., Scotti, G., Fazio, F., Cappa, S. F., & Moro, A. (2009). Syntax without language: neurobiological evidence for cross-domain syntactic computations. Cortex, 45(7), 825–38.Google Scholar
  66. Thompson, C. K., Bonakdarpour, B., Fix, S. C., Blumenfeld, H. K., Parrish, T. B., Gitelman, D. R., & Mesulam, M.-M. (2007). Neural correlates of verb argument structure processing. Journal of Cognitive Neuroscience, 19(11), 1753–67.Google Scholar
  67. Thompson-Schill, S. L., D’Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proceedings of the National Academy of Sciences, 94(26), 14792–7.Google Scholar
  68. Tyler, L. K., Marslen-Wilson, W. D., Randall, B., Wright, P., Devereux, B. J., Zhuang, J., Papoutsi, M., & Stamatakis, E. A. (2011). Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage. Brain: A Journal of Neurology, 134(2), 415–31.Google Scholar
  69. Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fMRI studies of emotion, personality, and social sognition. Perspectives on Psychological Science, 4(3), 274–90.Google Scholar
  70. Wanner, E., & Maratsos, M. (1978). An ATN approach in comprehension. In M. Halle, J. Bresnan & G. Miller (eds.), Linguistic theory and psychological reality. Cambridge, MA: MIT Press, pp. 119–61.Google Scholar
  71. Weckerly, J., & Kutas, M. (1999). An electrophysiological analysis of animacy effects in the processing of object relative sentences. Psychophysiology, 36(5), 559–70.Google Scholar
  72. Zagar, D., Pynte, J., & Rativeau, S. (1997). Evidence for early closure attachment on first-pass reading times in French. Quarterly Journal of Experimental Psychology, 50A, 421–38.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2018

Authors and Affiliations

  1. 1.School of MedicineUniversity of California, San DiegoSan Diego, La JollaUSA

Personalised recommendations