Skip to main content

A Concept for Quantitative Comparison of Mathematical and Natural Language and its possible Effect on Learning

  • Chapter
  • First Online:
Book cover Positive Learning in the Age of Information

Abstract

Starting with the question whether there is a connection between the mathematical capabilities of a person and his or her mother tongue, we introduce a new modeling approach to quantitatively compare natural languages with mathematical language. The question arises from educational assessment studies that indicate such a relation. Texts written in natural languages can be deconstructed into a dependence graph, in simple cases a dependence tree. The same kind of deconstruction is also possible for mathematical texts. This gives an idea of how to quantitatively compare mathematical and natural language. To that end, we develop algorithms to define the distance between graphs. In this paper, we restrict the structure to trees. In order to measure the distance between trees, we use algorithms based on previous work measuring the distance of neurons using the constrained tree edit distance. Once a distance matrix has been computed, this matrix can be used to perform a cluster analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • Bisang, W. (2015). Hidden Complexity - The Neglected Side of Complexity and its Implications. Linguistics Vanguard, 1(1), 177–187.

    Google Scholar 

  • Brückner, S., Förster, M., Zlatkin-Troitschanskaia, O., & Walstad, W. B. (2015). Effects of prior economic education, native language, and gender on economic knowledge of firstyear students in higher education. A comparative study between Germany and the USA. Studies in Higher Education, 40(3), 437–453. https://doi.org/10.1080/03075079.2015.1004235

  • Cauchy, A.-L. (1821). Cours d’Analyse de l’Ecole royale polytechnique. I.re Partie, L’Imprimerie Royale, Debure frères, Libraires du Roi et de la Bibliothèque du Roi.

    Google Scholar 

  • CoreNLP (2017). Stanford CoreNLP oreNLP CoreNLP -07. du Ro. Retrieved from https://stanfordnlp.github.io/CoreNLP/. Accessed: June 10 2017.

  • Euler, L. (1748). Introductio in analysin infinitorum. Opera Omnia, Serie 1, Vol 8.

    Google Scholar 

  • Euler, L. (1770). Vollständige Anleitung zur Algebra, Bd. 1. Kaiserliche Akademie der Wissenschaften, St. Petersburg, 1770.

    Google Scholar 

  • Hamming, R. W. (1950). Error detecting and error correcting codes. Bell Systems Technical Journal, 26, 147–160.

    Google Scholar 

  • Heumann, H., & Wittum G. (2009). The tree-edit-distance, a measure for quantifying neuronal morphology. Neuroinformatics 7(3), 179–190.

    Google Scholar 

  • Kilpeläinen, P., & Mannila, H. (1991). The tree inclusion problem. In Proc. Internat. Joint Conf. on the Theory and Practice of Software Development, Volume 1, (pp. 202–214).

    Google Scholar 

  • Lagrange, J. L. (1797). Théorie Des Fonctions Analytiques, Contenant Les Principes Du Calcul Différentiel, Dégagés De Toute Considération D’Infiniment Petits ou d’Évanouissans, De limites Ou de Fluxions, Et Réduits A L’Analyse Algébrique Des Quantités Finies. Paris: Imprimerie de la République, Prairial an V.

    Google Scholar 

  • Leibniz, G. W. (1684). Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec irrationales quantitates moratur, et singulare pro illis calculi genus. Acta Eruditorum Lipsiae, 1684.

    Google Scholar 

  • Levenshtein, V. I. (1966). Binary codes capable of correcting insertions and reversals. Soviet Physics Doklady, 10(8), 707–710.

    Google Scholar 

  • NLTK (2017). Natural Language Toolkit. Retrieved from http://www.nltk.org/. Accessed: June 10 2017.

  • Selkow, S. (1977). The tree-to-tree editing problem. Information Processing Letters, (6)6, 184–186.

    Google Scholar 

  • SpaCy (2017). https://spacy.io/. Accessed: June 10 2017.

  • Tai, K. (1979). The tree-to-tree correction problem. Journal of the Association for Computing Machinery, 26(3), 422–433.

    Google Scholar 

  • Wagner, R., & Fischer, M. (1974). The string-to-string correction problem. Journal of the Association for Computing Machinery, 12(1), 168–173.

    Google Scholar 

  • Walstad, W. B., Watts, M., & Rebeck, K. (2007). Test of understanding in college economics: Examiner’s manual (4th ed.). New York, NY: National Council on Economic Education.

    Google Scholar 

  • Weierstraß, K. (1878). Einleitung in die Theorien der Analytischen Funktionen. Vorlesung, gehalten in Berlin 1878. Mitschr. von Adolf Hurwitz.

    Google Scholar 

  • Wittum, G. (1982). Diplomarbeit, Mathematik, Universität Karlsruhe.

    Google Scholar 

  • Zhang, K., Statman, R., & Shasha, D. (1992). On the editing distance between unordered labeled trees. Information Processing Letters, 42, 133–139.

    Google Scholar 

  • Zhang, K. (1996). A constrained edit distance between unordered labeled trees. Algorithmica, 15, 205–222.

    Google Scholar 

  • Zlatkin-Troitschanskaia, O., Brückner, S., Schmidt, S., & Förster, M. (2016). Messung ökonomischen Fachwissens bei Studierenden in Deutschland und den USA – Eine mehrebenenanalytische Betrachtung der hochschulinstitutionellen und individuellen Einfl ussfaktoren. Unterrichtswissenschaft, 44(1), 73–88. https://doi.org/10.3262/uw1601073

  • Zlatkin-Troitschanskaia, O., Förster, M., Brückner, S., & Happ, R. (2014). Insights from a German assessment of business and economics competence. In H. Coates (Ed.), Higher Education Learning Outcomes Assessment: International Perspectives (pp. 175–197). Frankfurt am Main: Lang. http://dx.doi.org/10.3726/978-3-653-04632-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Wittum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wittum, G., Jabs, R., Hoffer, M., Nägel, A., Bisang, W., Zlatkin-Troitschanskaia, O. (2018). A Concept for Quantitative Comparison of Mathematical and Natural Language and its possible Effect on Learning. In: Zlatkin-Troitschanskaia, O., Wittum, G., Dengel, A. (eds) Positive Learning in the Age of Information. Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-19567-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-19567-0_8

  • Published:

  • Publisher Name: Springer VS, Wiesbaden

  • Print ISBN: 978-3-658-19566-3

  • Online ISBN: 978-3-658-19567-0

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics