PM reduction over vanadium SCR

  • Alexander FeilingEmail author
  • Christian Beidl
Conference paper
Part of the Proceedings book series (PROCEE)


Emission limits and legislative boundaries at the On-Road and Off-Road applications are steadily tightened. Beside Europe and the USA even at the BRICS states (Brazil, Russia, India, China, South Africa) a stricter legislation is visible.

The limits of carbon monoxide (CO), hydrocarbon (HC), nitrogen oxide (NOx) and particulate matter (PM) are strictly lowered. Optimization of engine parameters like EGR and injection technology is not sufficient. Adapted exhaust gas aftertreatment (EGA) systems have to be used to reach the targets. A combination of different catalyst systems is suitable.

Recent EU VI systems use particle filters, Diesel oxidation catalysts (DOC) as well as lean NOx trap catalysts or SCR systems. For emerging markets, the combination of increased mobility requirements and the need of cheap and resilient exhaust gas aftertreatment systems lead to SCR-only systems based on vanadium (V-SCR). Beside the positive effect of low costs, vanadium SCR systems show a positive particulate emission reducing effect under different circumstances. The observed values for PM and hydrocarbons present significant reductions, but this property has not yet been adequately studied and understood. CO2 is the favored outcome after oxidation, but also CO and byproducts of partial oxidation can been found.

It was shown that especially smaller particles are preferably reduced by the oxidation at the V-SCR. This is advantageous because studies arise that small particles seem to be more harmful to human health. A high efficiency application of the engine shows the best results of the oxidation effect and furthermore low tailpipe emissions of TPM, NOx and CO2, which leads to an additional benefit for a possible series application.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1. DEUTSCHMANN, O. und J. GRUNWALDT. Abgasnachbehandlung in mobilen Systemen: Stand der Technik, Herausforderungen und Perspektiven [online]. Chemie Ingenieur Technik, 2013, 85(5), 595-617. ISSN 1522-2640. Verfügbar unter: doi: 10.1002/cite.201200188
  2. 2. ZHAN, R., M. LI und L. SHUI. Updating China Heavy-Duty On-Road Diesel Emission Regulations. In: SAE 2012 World Congress & Exhibition: SAE International400 Commonwealth Drive, Warrendale, PA, United States, 2012.Google Scholar
  3. 3. JOHANNESEN, L.T. Active regeneration of an aftertreatment system including a VSCR catalyst with enhanced thermal stability.Google Scholar
  4. 4. CASAPU, M., J.-D. GRUNWALDT, M. MACIEJEWSKI, M. WITTROCK, U. GÖBEL und A. BAIKER. Formation and stability of barium aluminate and cerate in NOx storage-reduction catalysts [online]. Applied Catalysis B: Environmental, 2006, 63(3-4), 232-242. ISSN 09263373. Verfügbar unter: doi: 10.1016/j.apcatb.2005.10.003
  5. 5. GÜNTER, T., M. CASAPU, D. DORONKIN, S. MANGOLD, V. TROUILLET, T. AUGENSTEIN und J.-D. GRUNWALDT. Potential and Limitations of Natural Chabazite for Selective Catalytic Reduction of NOx with NH 3 [online]. Chemie Ingenieur Technik, 2013, 85(5), 632-641. ISSN 1522-2640. Verfügbar unter: doi: 10.1002/cite.201200182
  6. 6. CHATTERJEE, D., O. DEUTSCHMANN und J. WARNATZ. Detailed surface reaction mechanism in a three-way catalyst [online]. Faraday Discussions, 2001, 119(1), 371-384. ISSN 13596640. Verfügbar unter: doi: 10.1039/b101968f
  7. 7. MLADENOV, N., J. KOOP, S. TISCHER und O. DEUTSCHMANN. Modeling of transport and chemistry in channel flows of automotive catalytic converters [online]. Chemical Engineering Science, 2010, 65(2), 812-826. ISSN 0009-2509. Verfügbar unter: doi: 10.1016/j.ces.2009.09.034
  8. 8. GIRARD, J.W., C. MONTREUIL, J. KIM, G. CAVATAIO und C. LAMBERT. Technical Advantages of Vanadium SCR Systems for Diesel NOx Control in Emerging Markets. SAE International, 2008, 1(1), 488-494.Google Scholar
  9. 9. LIEBSCH, S. Katalytische Partikeloxidation im Kontext von Harnstoff-SCR und Partikelkonfektionierung. Dissertation. Dresden, 27. April 2004.Google Scholar
  10. 10. MAYER, A., M. KASPER, T. MOSIMANN, F. LEGERER, J. CZERWINSKI, L. EMMENEGGER, J. MOHN, A. ULRICH und P. KIRCHEN. Emissions of Nanoparticles from HDV EURO4 or EURO5 engines compared with EURO3 with and without DPF. SAE International, 2006.Google Scholar
  11. 11. JIANG, L., Y. GE, A.N. SHAH, C. HE und Z. LIU. Unregulated emissions from a diesel engine equipped with vanadium-based Urea-SCR catalyst [online]. Journal of Environmental Sciences, 2010, 22(4), 575-581. ISSN 10010742. Verfügbar unter: doi: 10.1016/S1001-0742(09)60148-0
  12. 12. CLOUDT, R., R. BAERT, F. WILLEMS und M. VERGOUWE. SCR-only Concept for Heavy-duty Euro VI Applications. MTZ, 2009, 70(09), 58-63.Google Scholar
  13. 13. KOEBEL, M. und M. ELSENER. Oxidation of Diesel-Generated Volatile Organic Compounds in the Selective Catalytic Reduction Process [online]. Industrial & Engineering Chemistry Research, 1998, 37(10), 3864-3868. ISSN 0888-5885. Verfügbar unter: doi: 10.1021/ie9801103
  14. 14. FINOCCHIO, E., M. BALDI, G. BUSCA, C. PISTARINO, G. ROMEZZANO, F. BREGANI und G. TOLEDO. A study of the abatement of VOC over V2O5–WO3– TiO2 and alternative SCR catalysts [online]. Catalysis Today, 2000, 59(3–4), 261-268. ISSN 0920-5861. Verfügbar unter: doi: 10.1016/S0920-5861(00)00292-3
  15. 15. SHAH, A.N. Performance evaluation of a Urea-water selective catalytic reduction (SCR) for controlling the exhaust emissions from a diesel engine.Google Scholar
  16. 16. LEHTORANTA, K., H. VESALA, P. KOPONEN und S. KORHONEN. Selective catalytic reduction operation with heavy fuel oil: NOx, NH3, and particle emissions [online]. Environmental science & technology, 2015, 49(7), 4735-4741. ISSN 0013- 936X. Verfügbar unter: doi: 10.1021/es506185x
  17. 17. LEE, C., D. KIM, K. OH und C. LEE. An Experimental Study of PM Emission Characteristics of Commercial Diesel Engine with Urea-SCR System.Google Scholar
  18. 18. BUSCA, G., M. BALDI, C. PISTARINO, J.M. GALLARDO AMORES, V. SANCHEZ ESCRIBANO, E. FINOCCHIO, G. ROMEZZANO, F. BREGANI und G.P. TOLEDO. Evaluation of V2O5–WO3–TiO2 and alternative SCR catalysts in the abatement of VOCs [online]. Catalysis Today, 1999, 53(4), 525-533. ISSN 0920-5861. Verfügbar unter: doi: 10.1016/S0920-5861(99)00140-6
  19. 19. LINDNER, S., A. MASSNER, U. GÄRTNER und T. KOCH. Rußreaktivität bei Nutzfahrzeug-Dieselmotoren [online]. MTZ - Motortechnische Zeitschrift, 75(4), 74-79. ISSN 0024-8525. Verfügbar unter: doi: 10.1007/s35146-014-0324-6
  20. 20. SCHUBIGER, R.A., K. BOULOUCHOUS und M.K. EBERLE. Rußbildung und Oxidation bei der dieselmotorischen Verbrennung [online]. MTZ - Motortechnische Zeitschrift, 2002, 63(5), 342-353. ISSN 0024-8525. Verfügbar unter: doi: 10.1007/BF03227355
  21. 21. OHRNBERGER, T. Einspritzdüsenauslegung und Brennraumgeometrien für ein direkteinspritzendes 2-Ventil-Dieselbrennverfahren. Dissertationsschrift. München, 25. Januar 2010.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.TU DarmstadtDarmstadtDeutschland

Personalised recommendations