Advertisement

Prediction of burn rate, knocking and cycle-to-cycle variations of methane / hydrogen mixtures in stoichiometric and lean engine operation conditions

  • S. Hann
  • L. Urban
  • Michael GrillEmail author
  • M. Bargende
Conference paper
  • 685 Downloads
Part of the Proceedings book series (PROCEE)

Zusammenfassung

Legal CO2 emitting requirements and an increasing worldwide need for energy demand a diversification on the fuel market, especially in terms of automobile applications. When it comes to reaching the emission targets, natural and bio gases (CNG, Compressed Natural Gas, respectively BNG, Bio Natural Gas) as well as synthetic methane based fuels (SNG, Synthetic Natural Gas) can play an important role in passenger and freight transportation. The advantages compared to conventional fossil fuels are well known: CO2 savings of approximately 20% compared to gasoline can be realized just by the favorable H-to-C-ratio of methane.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1] Grill, M.; Billinger, T.; Bargende, M.: Quasi-Dimensional Modeling of Spark Ignition Engine Combustion with Variable Valve Train, SAE-Paper 2006-01- 1107, 2006.Google Scholar
  2. [2] Heywood, J. B.: Internal Combustion Engine Fundamentals. McGraw-Hill Series in Mechanical Engineering, 1988.Google Scholar
  3. [3] Gülder, Ö.: Correlations of Laminar Combustion Data for Alternative S.I. Engine Fuels. In: SAE Technical Papers (1984), Nr. 841000.Google Scholar
  4. [4] Bargende, M.: Ein Gleichungsansatz zur Berechnung der instationären Wandwärmeverluste im Hochdruckteil von Ottomotoren. Dissertation TH Darmstadt, 1991.Google Scholar
  5. [5] Goodwin, D. G.; Moffat, H. K.; Speth, R. L.: Cantera: An Object-oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes. http://www.cantera.org, 2015. – Version 2.2.0
  6. [6] Smith, G. P.; Golden, D. M.; Frenklach, M.; Eiteener, B.; Goldenberg, M.; Bowman, C. T.; Hanson, R. K.; Gardiner, W. C.; Lissianski, V. V.; Qin, Z. W.: GRI-Mech 3.0. http://www.me.berkeley.edu/gri_mech/.Version: 2000
  7. [7] Qin, Z.; Lissianski, V. V.; Yang, H.; Gardiner Jr., W. C.; Davis, S. G.; Wang, H.: An Optimized Reaction Model of C1-C3 Combustion. http://ignis.usc.edu/Mechanisms/C3-opt/C3-opt.html. Version: 2000
  8. [8] Wang, H.; You, X.; Joshi, A. V.; Davis, S. G.; Laskin, A.; Egolfopoulos, F. N.; Law, C. K.: USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. http://ignis.usc.edu/Mechanisms/USCMech%20II/USC_Mech%20II.htm. Version: May 2007
  9. [9] Hermanns, R. T. E.: Laminar Burning Velocities of Methan-Hydrogen-Air Mixtures, Technische Universiteit Eindhoven, Diss., 2007Google Scholar
  10. [10] Dirrenberger, P.; Le Gall, H.; Bounaceur, R.; Herbinet, O.; Glaude, P.-A.; Konnov, A.; Battin-Leclerc, F.: Measurements of Laminar Flame Velocity for Components of Natural Gas. In: Energy and Fuels 25 (2011), Nr. 9, 3875-3884Google Scholar
  11. [11] Warnatz, J.; Maas, U. and Dibble, R. W.: Verbrennung – Physikalisch-Chemische Grundlagen, Modellierung und Simulation, Experimente, Schadstoffentstehung. 3. Springer-Verlag Berlin Heidelberg, 2001Google Scholar
  12. [12] Konnov, A.: The Temperature and Pressure Dependences of the Laminar Burning Velocity: Experiments and Modelling. In: Proceedings of the European Combustion Meeting – 2015. Budapest, Hungary, 2015Google Scholar
  13. [13] Ewald, J.: A Level Set Based Flamelet Model for the Prediction of Combustion in Homogeneous Charge and Direct Injection Spark Ignition Engines, Rheinischwestfälische Technische Hochschule Aachen, Diss., 2006Google Scholar
  14. [14] Spicher, U., Worret, R.: Entwicklung eines Kriteriums zur Vorausberechnung der Klopfgrenze, FVV-Abschlußbericht, Vorhaben Nr. 700, 2002.Google Scholar
  15. [15] Franzke, D.: Beitrag zur Ermittlung eines Klopfkriteriums der ottomotorischen Verbrennung und zur Vorausberechnung der Klopfgrenze, Dissertation, TU München, 1991.Google Scholar
  16. [16] Van Basshuysen, R.: Erdgas und erneuerbares Methan für den Fahrzeugantrieb. Wege zur klimaneutralen Mobilität, 2015.Google Scholar
  17. [17] Wenig, M.: Simulation der ottomotorischen Zyklenschwankungen. Diss., Universität Stuttgart, 2013Google Scholar
  18. [18] Bossung, C.: Quasidimensionales Ladungsbewegungs- und Turbulenzmodell für die Motorprozessrechnung, ATZ live – Ladungswechsel im Verbrennungsmotor, 2014Google Scholar
  19. [19] Wenig, M.; Grill, M. and Bargende, M.: A New Approach for Modeling Cycle-to- Cycle Variations within the Framework of a Real Working-Process Simulation, SAE Int. J. Engines 6(2):2013Google Scholar
  20. [20] Bossung, C.: Turbulenzmodellierung für quasidimensionale Arbeitsprozessrechnung, in: Informationstagung Motoren, Herbsttagung 2014, Dortmund. Frankfurt: Forschungsvereinigung Verbrennungskraftmaschinen e.V. = FVV, Abschlussbericht Vorhaben Nr. 1066 (AiF-Nr. 17092), Heft R568 (2014)Google Scholar
  21. [21] Scharlipp, S.; Urban, L.: Methan-Kraftstoffe: Potenzialstudie und Kennzahlen, final report for FVV-project no. 1126, Frankfurt am Main: Forschungsvereinigung Verbrennungskraftmaschinen, 2015Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.Research Institute of Automotive Engineering and Vehicle Engines Stuttgart (FKFS)StuttgartDeutschland

Personalised recommendations