Advertisement

Ergänzung zu Multiskalenverfahren und reale Ingenieursanwendungen

  • Jürgen Geiser
Chapter

Zusammenfassung

Im folgenden Kapitel wird eine Erweiterung von den Multiskalenverfahren gegeben, wie sie in der Praxis und bei realen Anforderungen modifiziert und eingesetzt werden. Dabei hat man oft ganz andere Ansprüche in der Praxis und die Multiskalenverfahren müssen entsprechend modifiziert werden. Sie dienen dann oft als Kopplungsverfahren, mit denen man die Ergebnisse der unterschiedlichen skalenabhängigen Modellen ergänzt. So werden Daten zwischen dem mikroskopischen oder dem makroskopischen Modell austauscht und und das Verständnis des Gesamtmodells verbessert. Dabei müssen die Multiskalenverfahren den praktischen Anforderungen angepasst werden. Sie müssen schnell programmierbar sein und sich schnell in eine vorhandene Programmstruktur einfügen lassen. Dabei ist es wichtig, die Wiederverwendung von Softwarecode anzustreben und die vorhandenen Softwarepakete entsprechend um die neuen Multiskalenlöser zu erweitern. Eine Möglichkeit ist der modulare Aufbau eines Softwarepakete, hier werden die schon vorhandenen Softwarecodes, z. B. ein Softwareprogramm für ein mikroskopisches Modell und ein Softwareprogramm für ein makroskopisches Modell mit einem Kopplungsalgorithmus zusammengefügt und zu einem Multiskalenmodell ergänzt. Wir besprechen nun die mehr praktische Umsetzung und die Modifikation der Multiskalenmethoden für die Ingenieurspraxis an realen Ingenieursanwendungen.

Literatur

  1. 1.
    Birdsall, K.C., Langdon, B.A.: Plasma Physics via Computer Simulation. Series in Plasma Physics. Taylor & Francis, New York (1985)Google Scholar
  2. 2.
    Deville, M., Gatski, B.T.: Mathematical Modeling for Complex Fluids and Flows. Springer, Berlin/Heidelberg (2012)Google Scholar
  3. 3.
    Duarte, A.S.R., Miranda, A.I.P., Oliveira, J.P.: Numerical and analytical modeling of unsteady viscoelastic flows: The start-up and pulsating test case problems. J. Non-Newtonian Fluid Mech. 154, 153–169 (2008)Google Scholar
  4. 4.
    Farago, I., Thomsen, G.P., Zlatev, Z.: On the additive splitting procedures and their computer realization. Appl. Math. Model. 32(8), 1552–1569 (2008)Google Scholar
  5. 5.
    Fattal, R., Kupferman, R.: Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126, 23–37 (2005)Google Scholar
  6. 6.
    Geiser, J.: Iterative operator-splitting methods with higher order time-integration methods and applications for parabolic partial differential equations. J. Comput. Appl. Math. 217, 227–242 (2008). Elsevier, AmsterdamGoogle Scholar
  7. 7.
    Geiser, J.: A higher order splitting method for elastic wave propagation. Int. J. Math. Math. Sci. 2008, 31, Article ID 291968 (2008). Hindawi Publishing Corp., New YorkGoogle Scholar
  8. 8.
    Geiser, J.: Decomposition Methods for Partial Differential Equations: Theory and Applications in Multiphysics Problems. Numerical Analysis and Scientific Computing Series. Taylor & Francis Group, Boca Raton/London (2009)Google Scholar
  9. 9.
    Geiser, J.: Iterative Splitting Methods for Differential Equations. Numerical Analysis and Scientific Computing Series. Taylor & Francis Group, Boca Raton/London/New York (2011)Google Scholar
  10. 10.
    Geiser, J.: Model order reduction for numerical simulation of particle transport based on numerical integration approaches. Math. Comput. Modell. Dyn. Syst. 20(4), 317–344 (2014)Google Scholar
  11. 11.
    Geiser, J.: Coupled Systems: Theory, Models, and Applications in Engineering. Numerical Analysis and Scientific Computing Series. Taylor & Francis Group, Boca Raton/London/New York (2014)Google Scholar
  12. 12.
    Geiser, J.: Additive via Iterative Splitting Schemes: Algorithms and Applications in Heat-Transfer Problems. In: Ivanyi, P., Topping, B.H.V. (Hrsg.) Proceedings of the Ninth International Conference on Engineering Computational Technology, Civil-Comp Press, Stirlingshire, Paper 51 (2014).  https://doi.org/10.4203/ccp.105.51
  13. 13.
    Geiser, J.: Modelling of langevin equations by the method of multiple scales. IFAC-PapersOnLine 48(1), 341–345 (2015)Google Scholar
  14. 14.
    Geiser, J.: Multicomponent and Multiscale Systems: Theory, Methods, and Applications in Engineering. Springer, Cham/Heidelberg/New York/Dordrecht/London (2016)Google Scholar
  15. 15.
    Geiser, J.: Additive and Iterative Splitting Methods for Multiscale and Multiphase Coupled Problems. J. Coupled Syst. Multiscale Dyn. 4(4), 271–291 (2016)Google Scholar
  16. 16.
    Geiser, J., Ewing, E.R., Liu, J.: Operator splitting methods for transport equations with nonlinear reactions. In: Bathe, K.J. (Hrsg.) Computational Fluid and Solid Mechanics 2005, S. 105–1108. Elsevier, Amsterdam (2005)Google Scholar
  17. 17.
    Geiser, J., Hueso, L.J., Martinez, E.: New versions of iterative splitting methods for the momentum equation. J. Comput. Appl. Math. 309, 1359–370 (2017)Google Scholar
  18. 18.
    Goedbloed, J.P.H., Poedts, S.: Principles of Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, Cambridge (2004)Google Scholar
  19. 19.
    Hackbusch, W.: Theorie und Numerik elliptischer Differentialgleichungen. Teubner Studienbücher, Stuttgart (1986)Google Scholar
  20. 20.
    Hahn, J.: Implementation of a simulation environment for the successive integration of mathematical models for cellular processes exemplified for central carbon metabolism in yeast, Master-Thesis, Theoretical Biophysics. Humboldt University of Berlin, Berlin (2013)Google Scholar
  21. 21.
    Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II. Springer Series in Computational Mathematics, Bd. 14. Springer, Berlin/Heidelberg (1996)Google Scholar
  22. 22.
    Harten, A.: High resolution schemes for hyperbolic conservation laws. J. Comput. Phys. 49, 357–393 (1983)Google Scholar
  23. 23.
    Hockney, R., Eastwood, J.: Computer Simulation Using Particles. Taylor & Francis Group, New York (1988)Google Scholar
  24. 24.
    Hynne, F., Dano, S., Sorensen, G.P.: Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 94(1–2), 121–163 (2001)Google Scholar
  25. 25.
    Kloeden, E.P., Platen, E.: The Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)Google Scholar
  26. 26.
    Kröner, D.: Numerical Schemes for Conservation Laws. Wiley-Teubner Series Advances in Numerical Mathematics. Wiley-Teubner, Chichester (1997)Google Scholar
  27. 27.
    Lapenta, G.: The particle-in-cell method – a brief introduction of the PIC method lecture-notes (2010). https://pers, www.kuleuven.be/~u0052182/teaching.html
  28. 28.
    Le Bris, C., Lelievre, T.: Multiscale modelling of complex fluids: A mathematical initiation. In: Engquist, B., Lötstedt, P., Runborg, O. (Hrsg.) Multiscale Modeling and Simulation in Science Series. Lecture Notes in Computational Science and Engineering, Bd. 66, S. 49–138, Springer, Berlin/Heidelberg (2009)Google Scholar
  29. 29.
    Le Bris, C., Lelievre, T.: Micro-macro models for viscoelastic fluids: Modelling, mathematics and numerics. Sci. China Math. 55(2), 353–384 (2012)Google Scholar
  30. 30.
    LeVeque, J.R.: Numerical Methods for Conservation Laws. Lectures in Mathematics. ETH-Zurich/Birkhauser-Verlag, Basel (1990)Google Scholar
  31. 31.
    LeVeque, J.R.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)Google Scholar
  32. 32.
    Lieberman, A.M., Lichtenberg, J.A.: Principle of Plasma Discharges and Materials Processing, 2. Aufl. Wiley, Hoboken (2005)Google Scholar
  33. 33.
    Lukacova-Medvidova, M., Notsu, H., She, B.: Energy dissipative characteristic schemes for the diffusive Oldroyd-B viscoelastic fluid. Int. J. Numer. Methods Fluids 81(9), 523–557 (2016)Google Scholar
  34. 34.
    MacNamara, S., Strang, G.: Operator Splitting. In: Glowinski, R., Osher, J.S., Yin, W. (Hrsg.) Splitting Methods in Communication, Imaging, Science, and Engineering. Scientific Computation, chapter 3, S. 95–114. Springer, Cham (2016)Google Scholar
  35. 35.
    McLachlan, I.R., Quispel, R.: Splitting methods. Acta Numer. 11, 341–434 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Mitchner, M., Kruger, H.C.: Partially Ionized Gases Wiley Series in Plasma Physics, 1. Aufl. Wiley, Hoboken (1973)Google Scholar
  37. 37.
    Nicholson, R.D.: Introduction to Plasma Theory. Wiley, New York (1983)Google Scholar
  38. 38.
    Oksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin/Heidelberg (2002)zbMATHGoogle Scholar
  39. 39.
    Peeters, G.A., Strintzi, D.: The Fokker-Planck equation, and its application in plasma physics. Ann. Phys. 17(2–3), 142–157 (2008). BerlinGoogle Scholar
  40. 40.
    Risken, H.: The Fokker-Planck Equation: Methods of Solutions and Applications, 2. Aufl. Springer, Berlin (1996)zbMATHGoogle Scholar
  41. 41.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal 5, 506–517 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Taflove, A., Hagness, C.S.: Computational Electrodynamics. Artech House, Boston (2005)zbMATHGoogle Scholar
  43. 43.
    Trotter, F.H.: On the product of semi-groups of operators. Proc. Am. Math. Soc. 10(4), 545–551 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Vabishchevich, N.P.: Additive Operator-Difference Schemes. Walter de Gruyter, Berlin/Boston (2014)zbMATHGoogle Scholar
  45. 45.
    Warnecke, G.: Analysis and Numerics for Conservation Laws. Springer, Berlin/Heidelberg (2005)CrossRefzbMATHGoogle Scholar
  46. 46.
    Wesseling, P.: Principles of Computational Fluid Dynamics. Springer, Berlin/New York (2001)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Jürgen Geiser
    • 1
  1. 1.Ruhr-Universität BochumBochumDeutschland

Personalised recommendations