Skip to main content

Driver’s Choice and System Outcomes in Congested Traffic Networks

  • Conference paper
  • First Online:

Part of the book series: FOM-Edition ((INTSE))

Abstract

Our study is investigating the effects of spatial orientation in the representative scenario of congested traffic in the Zurich metropolitan area. Each driver has planned his itinerary with the help of an off-the-shelf navigation device and sticks to his shortest route. The research question is: How much will the traffic situation improve if part of the drivers use real-time navigation information (such as may be available via smartphone)?

We assume that the population of the drivers is divided into the class of non-informed drivers with static knowledge and deterministic behavior, and into the class of informed drivers with dynamic knowledge and stochastic behavior. The non-informed drivers move along the route they perceived as the shortest one when starting their trip. The informed drivers head for their destination dynamically by choosing the currently most advantageous link at each traffic node on their trip. The decisions of the informed drivers will be mapped and microscopically simulated using the MATSim software. An informed driver’s decision is based on the random utility in favor of a route. The utility function takes into account three properties: the travel time on the route, the confidence in the information, and the risk attitude according to the drivers mode of behavior.

Our experiments reveal differences in respect of the load on the road network and the mean daily travel times of the drivers. The key result is that all drivers benefit even when only part of them navigate by using current traffic information. Further results quantify the time savings that each of the two classes of drivers achieves, and also how the entirety of drivers benefit from certain shares of informed drivers. Our analysis also shows the variation of descriptive and normative behavior in respect of route choice. The scenario’s estimated saving potential of about 25 percent can be exploited if the informed drivers behave in a disciplined manner and follow the recommended links.

This is a preview of subscription content, log in via an institution.

References

  • Abraham, C., & Coquand, R. (1961). La répartition du trafic entre itinéraires concurrents: réflexions sur le comportement des usagers, application au calcul des péages. Revue générale des routes et aérodromes, 357, 57–76.

    Google Scholar 

  • Balmer, M., Meister, K., Rieser, M., Nagel, K., & Axhausen, K. W. (2008). Agent-based simulation of travel demand: Structure and computational performance of MATSim-T. Vortrag, 2nd TRB Conference on Innovations in Travel Modeling, Portland.

    Google Scholar 

  • Balmer, M., Meister, K., Waraich, R. A., Horni, A., Ciari, F., & Axhausen, K. W. (2010). Agenten-basierte Simulation für location based services. Schlussbericht KTI 8443.1 ESPP-ES, IVT. Zürich: ETH Zürich.

    Google Scholar 

  • Balmer, M. (2007). Travel Demand Modeling for Multi-Agent Transport Simulations: Algorithms and Systems. Dissertation 17238, Eidgenössische Technische Hochschule Zürich.

    Google Scholar 

  • Beilner, H., & Jacobs, F. (1972). Probabilistic aspects of traffic assignment. Proceedings of the 5th ISTTT, Berkeley.

    Google Scholar 

  • Bell, P. A., Greene, T. C., Fisher, J. D., & Baum, A. (2001). Environmental psychology. Fort Worth: Harcourt College Publishers.

    Google Scholar 

  • Ben-Akiva, M. E., & Bierlaire, M. (1999). Discrete choice methods and their application to short term travel decisions. International Series in Operations Research and Management Science. (pp. 5–34).

    Google Scholar 

  • Bezuidenhout, J. J., & Zealand, M. N. (2002). Investigating drivers’ variance in route choice between the home and work commute trip in the AM and PM. In Traffic management workshop.

    Google Scholar 

  • Bovy, P. H. L. (1984). Travel time errors in shortest route predictions and all-or-nothing assignments: theoretical analysis and simulation results. Delft, TH (No. 28). ISO, Memorandum.

    Google Scholar 

  • Brilon, W., & Dette, H. (2002). Multiplikative Random-Utility-Modelle für den Modal-split. Konferenz HEUREKA ’02, Optimierung in Verkehr und Transport, Karlsruhe. (pp. 279–292). Tagungsbericht.

    Google Scholar 

  • Busch, F., Friedrich, M., Schiller, C., Bakircioglu, I., Belzner, H., Fiedler, I., Koller-Matschke, I., Mandir, E., Pillat, J., Riess, S., Snethlage, M., Winkler, C., & Zimmermann, F. (2012a). Wirkungen individueller und kollektiver Verkehrsinformation in Straßennetzen – Teil 1: Problemstellung und Erhebungsmethodik, Straßenverkehrstechnik (pp. 625–630). Bonn: Kirschbaum.

    Google Scholar 

  • Busch, F., Friedrich, M., Schiller, C., Bakircioglu, I., Belzner, H., Fiedler, I., Koller-Matschke, I., Mandir, E., Pillat, J., Riess, S., Snethlage, M., Winkler, C., & Zimmermann, F. (2012b). Wirkungen individueller und kollektiver Verkehrsinformation in Straßennetzen – Teil 2: Analysen und Ergebnisse, Straßenverkehrstechnik (pp. 719–727). Bonn: Kirschbaum.

    Google Scholar 

  • Cascetta, E., Nuzzolo, A., Russo, F., & Vitetta, A. (1996). A modified logit route choice model overcoming path overlapping problems: specification and some calibration results for interurban networks. Proceedings of the 13th International Symposium on Transportation and Traffic Theory, Lyon. (pp. 697–711). Amsterdam: Elsevier.

    Google Scholar 

  • Charypar, D., & Nagel, K. (2005). Generating complete all-day activity plans with genetic algorithms. Transportation, 32(4), 369–397.

    Article  Google Scholar 

  • Chorus, C. G., Molin, E. J. E., & van Wee, B. (2006). Travel information as an instrument to change car-drivers’ travel choices: a literature review. European Journal ofTransport and Infrastructure Research, 6(4), 335–364.

    Google Scholar 

  • Dobler, C., Axhausen, K. W., & Weinmann, S. (2013). Transport simulations: knowledge levels and system outcomes. In M. J. Rooda & E. J. Miller (eds.), Travel behaviour research: current foundations, future prospects selected papers from the 13th International Conference on Travel Behaviour Research, Toronto, 15.–20. July 2012. (pp. 299–319). Toronto: International Association for Travel Behaviour Research.

    Google Scholar 

  • Eymann, T. (2003). Digitale Geschäftsagenten – Softwareagenten im Einsatz. Berlin: Springer.

    Book  Google Scholar 

  • Ferber, J. (1999). Multi-agent systems: an introduction to distributed artificial intelligence. Boston: Addison-Wesley.

    Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: an analysis of decision under risk. Econometrica, 47, 263–291.

    Article  Google Scholar 

  • Karl, C. A. (2003). The Learning Driver: Meeting Traveller Information Needs. Dissertation submitted to the Australian Graduate School of Entrepreneurship.

    Google Scholar 

  • Klügl, F. (2001). Multiagentensimulation – Konzepte, Werkzeuge, Anwendung. München: Addison-Wesley.

    Google Scholar 

  • Kroll, E. B. (2010). Das Nutzenkonzept und Probleme bei der Erklärung individueller Entscheidungen. Berlin: Logos.

    Google Scholar 

  • LeClerq, F. (1975). Some remarks on probabilistic route choice models. PTRC Summer Annual Meeting, London. Vol. P 122.

    Google Scholar 

  • Levinson, D. (2003). The value of advanced traveler information systems for route choice. Transportation Research Part C: Emerging Technologies, 11(1), 75–87.

    Article  Google Scholar 

  • Liu, H.X., Recker, W. & Chen, A. (2004). Uncovering the contribution of travel time reliability to dynamic route choice using realtime loop data. Transportation Research Part A: Policy and Practice, 38(6), 435–453.

    Google Scholar 

  • Luce, D. (1959). Individual choice behavior. New York: Wiley & Sons.

    Google Scholar 

  • Mandir, E. (2012). Potential of traffic information to optimize route and departure time choice. Dissertation, Universität Stuttgart, Institut für Straßen- und Verkehrswesen, Band 44, 7-2012.

    Google Scholar 

  • Marschak, J. (1960). ‘Binary choice constraints on random utility indications. In K. Arrow (ed.), Stanford Symposium on Mathematical Methods in the Social Sciences (pp. 312–329). Stanford: Stanford University Press.

    Google Scholar 

  • McFadden, D. (1973). Conditional logit analysis of qualitative choice behavior. In P. Zarembka (ed.), Frontiers in econometrics (pp. 105–142). New York: Academic Press.

    Google Scholar 

  • Meister, K., Balmer, M., Ciari, F., Horni, A., Rieser, M., Waraich, R. A., & Axhausen, K. W. (2010). Large-scale agent-based travel demand optimization applied to Switzerland, including mode choice. paper presented at the 12th World Conference on Transportation Research, Lisbon.

    Google Scholar 

  • Nöcker, G., Mezger, K., & Kerner, B. (2005). Vorausschauende Fahrerassistenzsysteme. Workshop Fahrerassistenzsysteme, Walting, 6.–8. Apr 2005.

    Google Scholar 

  • Ortúzar, J. D., & Willumsen, L. G. (2001). Modelling transport. Chichester: Wiley & Sons.

    Google Scholar 

  • Ramming, M. S. (2002). Network Knowledge and Route Choice. Ph.D. Thesis, Massachusetts Institute of Technology, Department of Civil and Environmental Engineering, Cambridge, MA, USA.

    Google Scholar 

  • Thurstone, L. (1927). A law of comparative judgement. Psychological Review, 34, 273–286.

    Article  Google Scholar 

  • Vrtic, M., Fröhlich, P., & Axhausen, K. W. (2003). Schweizerische Netzmodelle für Strassen- und Schienenverkehr. In T. Bieger, C. Lässer & R. Maggi (eds.), Jahrbuch 2002/2003 Schweizerische Verkehrswirtschaft (pp. 119–140). St. Gallen: Schweizerische Verkehrswissenschaftliche Gesellschaft (SVWG).

    Google Scholar 

  • Wardman, M. (2004). Public transport values of time. Transport policy, 11(4), 363–377.

    Article  Google Scholar 

  • Weinmann, S. (2013). Simulation of Spatial Learning Mechanisms. Dissertation 21511, Eidgenössische Technische Hochschule Zürich.

    Google Scholar 

  • Wochinger, K., & Boehm-Davis, D. (1995). The effects of age, spatial ability, and navigational information on navigational performance. U.S. Department of Transportation Federal Highway Administration Publication No. FHWA-RD-95166.

    Google Scholar 

  • Zuurbier, F. S. (2010). Intelligent route guidance. Thesis Delft University of Technology (No. TRAIL Thesis Series T2010/8).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Weinmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Weinmann, S., Axhausen, K.W., Dobler, C. (2018). Driver’s Choice and System Outcomes in Congested Traffic Networks. In: Bakırcı, F., Heupel, T., Kocagöz, O., Özen, Ü. (eds) German-Turkish Perspectives on IT and Innovation Management. FOM-Edition(). Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-16962-6_14

Download citation

Publish with us

Policies and ethics