Advertisement

Ein Verfahren zur Dekomposition von Mode-Effekten in eine mess- und eine repräsentationsbezogene Komponente

  • Heinz LeitgöbEmail author
Chapter
Part of the Schriftenreihe der ASI - Arbeitsgemeinschaft Sozialwissenschaftlicher Institute book series (SASI)

Zusammenfassung

Die valide standardisierte Messung sozialer Phänomene setzt voraus, dass die Wahl des Erhebungsverfahrens keinen Einfluss auf das Antwortverhalten der Respondenten ausübt und die verfügbaren survey administration modes (z.B. persönlich, telefonisch, postalisch, webbasiert) identische Antworten auf dieselben Fragen bzw. Items hervorbringen.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Allison, P. D. (1999). Comparing logit and probit coefficients across groups. Sociological Methods & Research, 28, 186-208.Google Scholar
  2. Angrist, J.D., & Pischke, J.-S. (2008). Mostly Harmless Econometrics. An Empiricist’s Companion. Princeton: Princeton University Press.Google Scholar
  3. Aschauer, W. (2009). Besonderheiten und Problemlagen der quantitativen Befragung von MigrantInnen. In M. Weichbold, J. Bacher, & C. Wolf (Hrsg.), Umfrageforschung. Herausforderungen und Grenzen. Sonderheft 9 der österreichischen Zeitschrift für Soziologie (S. 293-315). Wiesbaden: VS Verlag.Google Scholar
  4. Astbury, B., & Leeuw, F.L. (2010). Unpacking black boxes: Mechanisms and theory building in evaluation. American Journal of Evaluation, 31, 363-381.Google Scholar
  5. Bachleitner, R., & Aschauer, W. (2009). Zur Situationsspezifität vom Raum, Zeit und Befindlichkeiten in der Umfrageforschung. In M. Weichbold, J. Bacher, & C. Wolf (Hrsg.), Umfrageforschung. Herausforderungen und Grenzen. Sonderheft 9 der österreichischen Zeitschrift für Soziologie (S. 515-538). Wiesbaden: VS Verlag.Google Scholar
  6. Bachleitner, R., Weichbold, M., & Aschauer, W. (2010). Zur Befragung im Kontext von Raum, Zeit und Befindlichkeit. Beiträge zu einer Theorie der Umfrageforschung. Wiesbaden: VS Verlag.Google Scholar
  7. Bauer, T.K., & Sinning, M. (2008). An extension of the Blinder-Oaxaca decomposition to nonlinear models. Advances in Statistical Analysis, 92, 197-206.Google Scholar
  8. Bauer, T.K., & Sinning, M. (2010). Blinder-Oaxaca decomposition for Tobit models. Applied Economics, 42, 1569-1575.Google Scholar
  9. Becker, R., & Hadjar A. (2009). Meritokratie – Zur gesellschaftlichen Legitimation ungleicher Bildungs-, Erwerbs- und Einkommenschancen in modernen Gesellschaften. In R. Becker (Hrsg), Lehrbuch der Bildungssoziologie (S. 35-59). Wiesbaden: VS Verlag.Google Scholar
  10. Biemer, P.P. (2010). Total survey error. Design, implementation, and evaluation. Public Opinion Quarterly, 74, 817-848.Google Scholar
  11. Biemer, P.P., & Stokes, S.L. (2004). Approaches to the modeling of measurement error. In P.P. Biemer, R.M. Groves, L.E. Lyberg, N.A. Mathiowetz, & S. Sudman (Hrsg), Measurement Errors in Surveys (S. 487-516). Hoboken: Wiley & Sons.Google Scholar
  12. Biewen, M. (2012). Additive decompositions with interaction effects. IZA Discussion Paper Nr. 6730.Google Scholar
  13. Biewen, M. (2014). A general decomposition formula with interaction effects. Applied Economics Letters, 21, 636-642.Google Scholar
  14. Birkel, C., Guzy, N., Hummelsheim, D., Oberwittler, D., & Pritsch, J. (2014). Der deutsche Viktimisierungssurvey 2012. Erste Ergebnisse zu Opfererfahrungen, Einstellungen gegenüber der Polizei und Kriminalitätsfurcht. Schriftenreihe des Max-Planck-Instituts für ausländisches und internationales Strafrecht, Arbeitsbericht A7 10/2014. Ettenheim: Stückle Druck und Verlag.Google Scholar
  15. Blinder, A.S. (1973). Wage discrimination: Reduced form and structural estimates. The Journal of Human Resources, 8, 436-455.Google Scholar
  16. Bourassa, S.C., & Andreescu, V. (2009). Decomposition of racial differences in sentencing: Application of an econometric technique to cocaine possession cases. Journal of Ethnicity in Criminal Justice, 7, 186-204.Google Scholar
  17. Bowling, A. (2005). Mode of questionnaire administration can have serious effects on data quality. Journal of Public Health, 27, 281-291.Google Scholar
  18. Bunge, M. (1997). Mechanism and explanation. Philosophy of the Social Sciences, 27, 410-465.Google Scholar
  19. Bunge, M. (2004). How does it work? The search for explanatory mechanisms. Philosophy of the Social Sciences, 34, 182-210.Google Scholar
  20. Carasse-Pouélé, C., & Fournier, M. (2006). Health disparities between racial groups in South Africa: A decomposition analysis. Social Science & Medicine, 62, 2879-2914.Google Scholar
  21. Chang, L.C., & Krosnick, J.A. (2009). National surveys via RDD telephone interviewing versus the internet: Comparing sample representativeness and response quality. Public Opinion Quarterly, 73, 641-678.Google Scholar
  22. Cohen, L., & Felson, M. (1979). Social change and crime rate trends: A routine activities approach. American Sociological Review, 44, 588-608.Google Scholar
  23. Collins, J., Hall, N., & Paul, L.A. (Hrsg.) (2004). Causation and Counterfactuals. Cambridge: MIT Press.Google Scholar
  24. Cook, T.D. (2002). Randomized experiments in educational policy research: A critical examination of the reasons the educational community has offered for not doing them. Educational Evaluation and Policy Analysis, 24, 175-199.Google Scholar
  25. Cooley, P.C., Miller, H.G., Gribble, J.N., & Turner, C.F. (2000). Automating telephone surveys: Using T-ACASI to obtain data on sensitive topics. Computers in Human Behavior, 16, 1-11.Google Scholar
  26. Cotton, J. (1988). On the decomposition of wage differentials. Review of Economics and Statistics, 70, 236-243.Google Scholar
  27. Couper, M.P., & Bosnjak, M. (2010). Internet surveys. In P. V. Marsden & J. D. Wright (Hrsg.), Handbook of Survey Research (S. 527-550). Howard House: Emerald Group Publishing Limited.Google Scholar
  28. Couper, M.P., Singer, E., & Tourangeau, R. (2004). Does voice matter? An interactive voice response (IVR) experiment. Journal of Official Statistics, 20, 551-570.Google Scholar
  29. de Leeuw, E.D. (1992). Data Quality in Mail, Telephone and Face to Face Surveys. Amsterdam: TT-Publikaties.Google Scholar
  30. de Leeuw, E.D. (2005). To mix or not to mix data collection modes in surveys. Journal of Official Statistics, 21, 233-255.Google Scholar
  31. de Leeuw, E.D. (2008). Choosing the method of data collection. In E.D. de Leeuw, J.J. Hox, & D.A. Dillman (Hrsg.), International Handbook of Survey Methodology (S. 113-135). New York: Psychology Press, Taylor & Francis Group.Google Scholar
  32. de Leeuw, E.D., & van der Zouwen, J. (1988). Data quality in face to face and telephone surveys: A comparative meta-analysis. In R.M. Groves, P.P. Biemer, L.E. Lyberg, J.T. Massey, W.L. Nicholls, & J. Waksberg (Hrsg.), Telephone Survey Methodology (S. 283-299). New York: Wiley & Sons.Google Scholar
  33. Demeulenaere, P. (Hrsg.) (2011). Analytical Sociology and Social Mechanisms. Cambridge: Cambridge University Press.Google Scholar
  34. de Puiseau, B.W., Hoffmann, A., & Musch, J. (2015). Soziale Erwünschtheit in Viktimisierungsbefragungen. In N. Guzy, C. Birkel, & R. Mischkowitz (Hrsg.), Viktimisierungsbefragungen in Deutschland. Band 2: Methodik und Methodologie (S. 187-216). Wiesbaden: Bundeskriminalamt.Google Scholar
  35. Dillman, D.A., Phelps, G., Tortora, R., Swift, K., Kohrell, J., Berck, J., & Messer, B.L. (2009). Response rate and measurement differences in mixedmode surveys using mail, telephone, interactive voice response (IVR) and the internet. Social Science Research, 38, 1-18.Google Scholar
  36. Dowd, B.E., Greene, W.H., & Norton, E.C. (2014). Computation of standard errors. Health Services Research, 49, 731-750.Google Scholar
  37. Durrant, G.B., & Steele, F. (2009). Multilevel modelling of refusal and noncontact in household surveys: Evidence from six UK Government surveys. Journal of the Royal Statistical Society, Series A (Statistics in Society), 172, 361-381.Google Scholar
  38. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. The Annals of Statistics, 7, 1-26.Google Scholar
  39. Efron, B., & Tibshirani, R.J. (1993). An Introduction to the Bootstrap. Boca Raton: CRC Press.Google Scholar
  40. Elster, J. (1983). Explaining Technological Change: A Case Study in the Philosophy of Science. Cambridge: Cambridge University Press.Google Scholar
  41. Elster, J. (1985). Making Sense of Marx. Cambridge: Cambridge University Press.Google Scholar
  42. Elster, J. (1989). Nuts and Bolts for the Social Sciences. Cambridge University Press.Google Scholar
  43. Elster, J. (2007). Explaining Social Behavior: More Nuts and Bolts for the Social Sciences. Cambridge University Press.Google Scholar
  44. Fairlie, R.W. (1999). The absence of the african-american owned business: An analysis of the dynamics of self-employment. Journal of Labor Economics, 17, 80-108.Google Scholar
  45. Fairlie, R.W. (2005). An extension of the Blinder-Oaxaca decomposition technique to logit and probit models. Journal of Economic and Social Measurement, 30, 305-316.Google Scholar
  46. Fortin, N., Lemieux, T., & Firpo, S. (2011). Decomposition methods in economics. In O. Ashenfelter, & D. Card (Hrsg.), Handbook of Labor Economics, Vol. 4, Part A (S. 1-102). Amsterdam: North Holland Publishing.Google Scholar
  47. Fricker, S. (2007). The Relationship Between Response Propensity and Data Quality in the Current Population Survey and the American Time Use Survey (Dissertation); verfügbar unter: http://drum.lib.umd.edu/bitstream/handle/1903/6888/umi-umd-4381.pdf?sequence=1&isAllowed=y. Zugegriffen: 01. Juli 2016.
  48. Fricker, S., Galesic, M., Tourangeau, R., & Yan, T. (2005). An experimental comparison of web and telephone surveys. Public Opinion Quarterly, 69, 370-392.Google Scholar
  49. Fricker, S., & Tourangeau, R. (2010). Examining the relationship between nonresponse propensity and data quality in two national household surveys. Public Opinion Quarterly, 74, 934-955.Google Scholar
  50. Fuchs, M. (2009). Item-Nonresponse in einer Befragung von Alten und Hochbetagten. Der Einfluss von Lebensalter und kognitiven Fähigkeiten. In M. Weichbold, J. Bacher, & C. Wolf (Hrsg.) Umfrageforschung. Herausforderungen und Grenzen. Sonderheft 9 der österreichischen Zeitschrift für Soziologie (S. 333-349). Wiesbaden: VS Verlag.Google Scholar
  51. Gangl. M. (2010a). Causal inference in sociological research. Annual Review of Sociology, 36, 21-47.Google Scholar
  52. Gangl. M. (2010b). Nichtparametrische Schätzung kausaler Effekte mittels Matchingverfahren. In C. Wolf, & H. Best (Hrsg.), Handbuch der sozialwissenschaftlichen Datenanalyse (S. 931-962). Wiesbaden: VS Verlag.Google Scholar
  53. Gerich, J., Lehner, R., Fellinger, J., & Holzinger, D. (2003). ANIMAQU – eine computerbasierte Befragung als Möglichkeit zur Erfassung besonderer Zielgruppen: Ein Beispiel einer Anwendung bei gehörlosen Menschen. ZUMA-Nachrichten, 52, 35-54.Google Scholar
  54. Gerich, J., & Lehner, R. (2006). Video computer-assisted self-administered interviews for deaf respondents. Field Methods, 18, 267-283.Google Scholar
  55. Gerring, J. (2007). The mechanismic worldview: Thinking inside the box. British Journal of Political Science, 38, 161-179.Google Scholar
  56. Gerring, J. (2010). Causal mechanisms: Yes, but… . Comparative Political Studies, 43, 1499-1526.Google Scholar
  57. Glennan, S. (1996). Mechanisms and the nature of causation. Erkenntnis, 44, 49-71.Google Scholar
  58. Glennan, S. (2002). Rethinking mechanistic explanation. Philosophy of Science, 69, 342-353.Google Scholar
  59. Glennan, S. (2005). Modeling mechanisms. Studies in History and Philosophy of Biological and Biomedical Sciences, 36, 443-464.Google Scholar
  60. Goldthorpe, J.H. (2001). Causation, statistics, and sociology. European Socio logical Review, 17, 1-20.Google Scholar
  61. Greene, W.H. (2012). Econometric Analysis. Upper Saddle River: Prentice Hall.Google Scholar
  62. Gross, N. (2009). A pragmatist theory of social mechanisms. American Socio logical Review, 74, 358-379.Google Scholar
  63. Groves, R.M. (2004). Survey Errors and Survey Costs. New York: Wiley & Sons.Google Scholar
  64. Groves, R.M., & Cooper, M.P. (1998). Nonrepsone in Household Surveys. New York: Wiley & Sons.Google Scholar
  65. Groves, R.M., Fowler, F.J., Couper, M.P., Lepkowski, J.M., Singer, E., & Tourangeau, R. (2009). Survey Methodology. Hoboken: Wiley & Sons.Google Scholar
  66. Groves, R.M., & Lyberg, L. (2009). Total survey error. Past, present, and future. Public Opinion Quarterly, 74, 849-879.Google Scholar
  67. Guo, S., & Fraser M.W. (2015). Propensity Score Analysis. Statistical Methods and Applications. Thousand Oaks: Sage.Google Scholar
  68. Guzy, N. (2015). Nonresponse Bias in telefonischen Opferbefragungen. Forschungsstand und Ergebnisse einer Nonresponseanalyse. In J. Schupp, & C. Wolf (Hrsg.), Nonresponse Bias. Qualitätssicherung sozialwissenschaftlicher Umfragen (S. 161-207). Wiesbaden: VS Verlag.Google Scholar
  69. Guzy, N., & Leitgöb, H. (2015). Assessing mode effects in online and telephone victimization surveys. International Review of Victimology, 21, 101-131.Google Scholar
  70. Hadjar, A. (2008). Meritokratie als Legitimationsprinzip. Die Entwicklung der Akzeptanz sozialer Ungleichheit im Zuge der Bildungsexpansion. Wiesbaden: VS Verlag.Google Scholar
  71. Hlavac, M. (2016). oaxaca: Blinder-Oaxaca Decomposition in R; verfügbar unter: https://cran.r-project.org/web/packages/oaxaca/vignettes/oaxaca.pdf. Zugegriffen: 01. Juli 2016.
  72. Hedström P. (2005). Dissecting the Social. Cambridge: Cambridge University Press.Google Scholar
  73. Hedström, P., & Bearman, P. (Hrsg.) (2009). The Oxford Handbook of Analytical Sociology. Oxford: Oxford University Press.Google Scholar
  74. Hedström, P., & Swedberg, R. (1996). Social mechanisms. Acta Sociologica, 39, 281-308.Google Scholar
  75. Hedström, P., & Swedberg, R. (Hrsg.) (1998). Social Mechanisms: An Analytical Approach to Social Theory. Cambridge: Cambridge University Press.Google Scholar
  76. Hedström, P., & Ylikoski, P. (2010). Causal mechanisms in the social sciences. Annual Review of Sociology, 36, 49-67.Google Scholar
  77. Heckman, J.J. (1992). Randomization and social program intervention. In C. Manski, & I. Garfinkel (Hrsg.), Evaluating Welfare and Training Programs (S. 201-230). Cambridge: Harvard University Press.Google Scholar
  78. Heckman, J.J. (2005). The scientific model of causality. Sociological Methodology, 35, 1-97.Google Scholar
  79. Heckman, J.J., & Robb, R. (1985). Using longitudinal data to estimate age, period and cohort effects in earnings equations. In W.M. Mason, & S.E. Fienberg (Hrsg.), Cohort Analysis in Social Research. Beyond the Identification Problem (S. 138-150). New York: Springer.Google Scholar
  80. Heckman, J.J., & Smith, J.A. (1995). Assessing the case of social experiments. The Journal of Economic Perspectives, 9, 85-110.Google Scholar
  81. Heerwegh, D. (2009). Mode differences between face-to-face and web surveys: An experimental investigation of data quality and social desirability effects. International Journal of Public Opinion Research, 21, 111-121.Google Scholar
  82. Heider, F. (1958). The Psychology of Interpersonal Relations. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  83. Hindelang, M.J., Gottfredson, M.R., & Garofalo, J. (1978). Victims of Personal Crime: An Empirical Foundation for a Theory of Personal Victimization. Cambridge, MA: Ballinger.Google Scholar
  84. Ho, D.E., Imai, K., King, G., & Stuart, E.A. (2007). Matching as nonparametric preprocessing for reducing model dependence in parametric causal inference. Political Analysis, 15, 199-236.Google Scholar
  85. Holland, P.W. (1986). Statistics and causal inference. Journal of the American Statistical Association, 81, 945-970.Google Scholar
  86. Howe, K.R. (2004). A critique of experimentalism. Qualitative Inquiry, 10, 42-61.Google Scholar
  87. Illari, P.M., & Williamson, J. (2012). What is a mechanism? Thinking about mechanisms across the sciences. European Journal for Philosophy of Science, 2, 119-135.Google Scholar
  88. Imai, K., Keele, L., Tingley, D., & Yamamoto, T. (2011). Unpacking the black box of causality: Learning about causal mechanisms from experimental and observational studies. American Political Science Review, 105, 765-789.Google Scholar
  89. Imai, K., Tingley, D., & Yamamoto, T. (2013). Experimental designs for identifying causal mechanisms. Journal of the Royal Statistical Society, Series C (Applied Statistics), 176, 5-51.Google Scholar
  90. Imbens, G.W., & Rubin, D.B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences. An Introduction. New York: Cambridge University Press.Google Scholar
  91. Jann, B. (2006). fairlie: Stata Modul to Generate Nonlinear Decomposition of Binary Outcome Differentials; verfügbar unter: http://econpapers.repec.org/software/bocbocode/s456727.htm. Zugegriffen: 01. Juli 2016).
  92. Jann, B. (2008). The Blinder-Oaxaca decomposition for linear regression models. The Stata Journal, 8, 453-479.Google Scholar
  93. Jans, M. (2008). Mode effects. In P.J. Lavrakas (Hrsg.), Encyclopedia of Research Methods. Volume 1 (S. 475-480). Thousand Oaks: Sage.Google Scholar
  94. Jäckle, A., Roberts, C. & Lynn, P. (2010). Assessing the effect of data collection mode on measurement. International Statistical Review, 78, 3-20.Google Scholar
  95. Jobe, J.B., Tourangeau, R., & Smith, A.F. (1993). Contributions of survey research to the understanding of memory. Applied Cognitive Psychology, 7, 567-584.Google Scholar
  96. Johnston, D.W., & Lee, W.-S. (2011). Explaining the female black-white obesity gap: A decomposition analysis of proximal causes. Demography, 48, 1429-1450.Google Scholar
  97. Jones, F.L. (1983). On decomposing the wage gap: A critical comment on Blinder’s method. Journal of Human Resources, 18, 126-130.Google Scholar
  98. Jones, F.L., & Kelley, J. (1984). Decomposing differences between groups. A cautionary note on measuring discrimination. Sociological Methods & Research, 12, 323-343.Google Scholar
  99. Junger-Tas, J. & Marshall, I.H. (1999). The self-report methodology in crime research. Crime & Justice, 25, 291-367.Google Scholar
  100. Kaczmirek, L., & Wolff, K.G. (2007). Survey design for visually impaired and blind people. In C. Stephanidis (Hrsg.), Universal Access in Human Computer Interaction. Coping with Diversity, Part I, Lecture Notes in Computer Science 4554 (S. 374-381). Heidelberg: Springer.Google Scholar
  101. Kirk, D.S. (2008). The neighborhood context of racial and ethnic disparities in arrest. Demography, 45, 55-77.Google Scholar
  102. Knight, C.R., & Winship, C. (2013). The causal implications of mechanistic thinking: Identification using directed acyclic graphs (DAGs). In S.L. Morgan (Hrsg.), Handbook of Causal Analysis for Social Research (S. 275-299). Dordrecht: Springer.Google Scholar
  103. Kreuter, F., Presser, S., & Tourangeau, R. (2008). Social desirability bias in CATI, IVR and web surveys. Public Opinion Quarterly, 72, 847-865.Google Scholar
  104. Krosnick, J.A. (1991). Response strategies for coping with cognitive demands of attribute measures in surveys. Applied Cognitive Psychology, 5, 213-236.Google Scholar
  105. Krumpal, I. (2013). Determinants of social desirability bias in sensitive surveys: A literature review. Quality & Quantity, 47, 2025-2047.Google Scholar
  106. Kury, H., Guzy, N., & Leitgöb, H. (2015). Effekte des Erhebungsmodus. In N. Guzy, C. Birkel, & R. Mischkowitz (Hrsg.), Viktimisierungsbefragungen in Deutschland. Band 2: Methodik und Methodologie (S. 77-105). Wiesbaden: Bundeskriminalamt.Google Scholar
  107. Lee, S. (2006). Propensity score adjustment as a weighting scheme for volunteer panel web surveys. Journal of Official Statistics, 22, 329-349.Google Scholar
  108. Lensvelt-Mulders, G. (2008). Surveying sensitive topics. In E.D. de Leeuw, J.J. Hox, & D.A. Dillman (Hrsg.), International Handbook of Survey Methodology (S. 461-478). New York: Psychology Press, Taylor & Francis Group.Google Scholar
  109. Lewis, D. (1973). Counterfactuals. Cambridge, MA: Harvard University Press.Google Scholar
  110. Little, D. (1991). Varieties of Social Explanation: An introduction to the Philosophy of Social Science. Boulder: Westview.Google Scholar
  111. Little, D. (1991). The heterogeneous social: New thinking about the foundations of the social sciences. In C. Mantzabinos (Hrsg.), Philosophy of the Social Sciences: Philosophical Theory and Scientific Practice (S. 154-178). Cambridge: Cambridge University Press.Google Scholar
  112. Lord, F.M., & Novick, M.R. (1968). Statistical Theories of Mental Test Scores. Reading: Addison-Wesley.Google Scholar
  113. Lugtig, P., Lensvelt-Mulders, G.J.L.M., Frerichs, R., & Greven, A. (2011). Estimating nonresponse bias and mode-effects in a mixed mode-survey. International Journal of Market Research, 53, 669-686.Google Scholar
  114. Lyberg, L.E., & Kasprzyk, D. (2004). Data collection methods and measurement error: An overview. In P.P. Biemer, R.M. Groves, L.E. Lyberg, N.A. Mathiowetz, & S. Sudman (Hrsg.), Measurement Errors in Surveys (S. 237-257). Hoboken: Wiley & Sons.Google Scholar
  115. MacDonald, J., Arkes, J., Nicosia, N., & Pacula, R.L. (2014). Decomposing racial disparities in prison and drug treatment commitments for criminal offenders in California. The Journal of Legal Studies, 43, 155-187.Google Scholar
  116. Machamer, P., Darden, L., & Craver, C.F. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1-25.Google Scholar
  117. Madden, D. (2010). Gender differences in mental well-being: A decomposition analysis. Social Indicators Research, 99, 101-114.Google Scholar
  118. Manski, C.F. (1995). Identification Problems in the Social Sciences. Cambridge: Harvard University Press.Google Scholar
  119. Manski, C.F. (2007). Identification for Prediction and Decision. Cambridge: Harvard University Press.Google Scholar
  120. Mayntz, R. (2004). Mechanisms in the analysis of social macro-phenomena. Philosophy of the Social Sciences, 34: 237-259.Google Scholar
  121. Mood, C. (2010). Logistic regression: Why we cannot do what we think we can do, and what we can do about it. European Sociological Review, 26, 67-82.Google Scholar
  122. Moosbrugger, H. (2012). Klassische Testtheorie (KTT). In H. Moosbrugger & A. Kelava (Hrsg.), Testtheorie und Fragebogenkonstruktion (S. 103-118). Berlin: Springer.Google Scholar
  123. Morgan, S.L., & Winship, C. (2015). Counterfactuals and Causal Inference. Methods and Principles for Social Research. Cambridge: Cambridge University Press.Google Scholar
  124. Mosher, C.J., Miethe, T.D., & Hart, T.C. (2011). The Mismeasure of Crime. Thousand Oaks: Sage.Google Scholar
  125. Neumark, D. (1988). Employers’ discriminatory behavior and the estimation of wage discrimination. Journal of Human Resources, 23, 279-295.Google Scholar
  126. Ñopo, H. (2007). An extension of the Blinder-Oaxaca decomposition for a continuum of comparison groups. IZA Discussion Paper Nr. 2921.Google Scholar
  127. Oaxaca, R. (1973). Male-female wage differentials in urban labor markets. International Economic Review, 14, 693-709.Google Scholar
  128. Oaxaca, R., & Ransom, M.R. (1994). On discrimination and the decomposition of wage differentials. Journal of Econometrics, 61, 5-21.Google Scholar
  129. Oberwittler, D., & Kury, H. (2015). Wissenschaftliche Perspektive. In N. Guzy, C. Birkel, & R. Mischkowitz (Hrsg), Viktimisierungsbefragungen in Deutschland (Band 1): Ziele, Nutzen und Forschungsstand (S. 107-131). Wiesbaden: Bundeskriminalamt.Google Scholar
  130. Oehlert, G.W. (1992). A note on the delta method. The American Statistician, 46, 27-29.Google Scholar
  131. Olson, K.M. (2006). Survey participation, nonresponse bias, measurement error bias, and total bias. Public Opinion Quarterly, 70, 737-758.Google Scholar
  132. Osada, N. (2004). Listening comprehension research: A brief review of the past thirty years. Dialogue, 3, 53-66.Google Scholar
  133. Osgood, C.E., & Tannenbaum, P.H. (1955). The principle of congruity in the prediction of attitude change. Psychological Review, 62, 42-55.Google Scholar
  134. Paulhus, D.L. (2002). Socially desirable responding: The evolution of a construct. In H.I. Braun, D.N. Jackson, & D.E. Wiley (Hrsg.), The Role of Constructs in Psychological and Educational Measurement (S. 49-69). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  135. Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge: Cambridge University Press.Google Scholar
  136. Podsakoff, P.M., MacKenzie, S.B., Podsakoff, N.P., & Lee, J.-Y. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88, 879-903.Google Scholar
  137. Redline, C. (2011). Clarifying Survey Questions (Dissertation); verfügbar unter: http://drum.lib.umd.edu/bitstream/handle/1903/11645/Redline_umd_0117E_12022.pdf;sequence=1. Zugegriffen: 01. Juli 2016.
  138. Reimers, C.W. (1983). Labor market discrimination against hispanic and black men. Review of Economics and Statistics, 65, 570-579.Google Scholar
  139. Rosenbaum, P.R., & Rubin, D.B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55.Google Scholar
  140. Rosenbaum, P.R., & Rubin, D.B. (1985). Constructing a control group using multivariate matched sampling methods that incorporate the propensity score. The American Statistican, 39, 33-38.Google Scholar
  141. Rubin, D.B. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. Journal of Educational Psychology, 66, 688-701.Google Scholar
  142. Rubin, D.B. (2005). Causal inference using potential outcomes. Journal of the American Statistical Association, 100, 322-331.Google Scholar
  143. Sakshaug, J.W., Yan, T., & Tourangeau, R. (2010). Nonresponse error, measurement error, and mode of data collection. Tradeoffs in a multi-mode survey of sensitive and non-sensitive items. Public Opinion Quarterly, 74, 907-933.Google Scholar
  144. Schaeffer, N.C., Dykema, J., & Maynard, D.W. (2010). Interviews and interviewing. In P.V. Marsden, & J. Wright (Hrsg), Handbook of Survey Research (S. 437-470). Howard House: Emerald Group Publishing Limited.Google Scholar
  145. Schaeffer, N.C., Dykema, J., & Maynard, D.W. (2010). Interviews and interviewing. In P.V. Marsden, & J. Wright (Hrsg), Handbook of Survey Research (S. 437-470). Howard House: Emerald Group Publishing Limited.Google Scholar
  146. Schmitt, N. (1994). Method bias: The importance of theory and measurement. Journal of Organizational Behavior, 15, 393-398.Google Scholar
  147. Schouten, B., van den Brakel, J., Buelens, B., van der Laan, J., & Klausch, T. (2013). Disentangling mode-specific selection and measurement bias in social surveys. Social Science Research, 42, 1555-1570.Google Scholar
  148. Schwarz, N., Strack, F., Hippler, H.-J., & Bishop, G. (1991). The impact of administration mode on response effects in survey measurement. Applied Cognitive Psychology, 5, 193-212.Google Scholar
  149. Scorzafave, L.G. & Pazello, E.T. (2007). Using normalized equations to solve the indetermination problem in the Blinder-Oaxaca decomposition: An application to the gender wage gap in Brazil. Revista Brasileira de Economica, 61, 535-548.Google Scholar
  150. Sinning, M., Hahn, M., & Bauer, T.K. (2008). The Blinder-Oaxaca decomposition for nonlinear regression models. The Stata Journal, 8, 480-492.Google Scholar
  151. Smith, T. (2011). Refining the total survey error perspective. International Journal of Public Opinion Research, 23, 464-484.Google Scholar
  152. Solga, H. (2005). Meritokratie ‒ die moderne Legitimation ungleicher Bildungschancen. In P.A. Berger, & H. Kahlert (Hrsg.), Institutionalisierte Ungleichheiten. Wie das Bildungswesen Chancen blockiert (S. 19-38). Weinheim: Juventa.Google Scholar
  153. Sparks, R.F., Glenn, H.G., & Dodd, D.J. (1977). Surveying Victims. A Study of Measurement of Criminal Victimization, Perceptions of Crime, and Attitudes to Criminal Justice. London: Wiley & Sons.Google Scholar
  154. Stadler, B. (2009). Die Befragung von MigrantInnen in Stichprobenerhebungen. In M. Weichbold, J. Bacher, & C. Wolf (Hrsg.) Umfrageforschung. Herausforderungen und Grenzen. Sonderheft 9 der österreichischen Zeitschrift für Soziologie (S. 275-291). Wiesbaden: VS Verlag.Google Scholar
  155. Stanley, T.D., & Jarrell, S.B. (1998). Gender wage discrimination bias? A meta-regression analysis. The Journal of Human Resources, 33, 947-973.Google Scholar
  156. Steel, D. (2004). Social mechanisms and causal inference. Philosophy of the Social Sciences, 34, 55-78.Google Scholar
  157. Stinchcombe, A. (1991). The conditions of fruitfulness of theorizing about mechanisms in social science. Philosophy of the Social Sciences, 21, 367-388Google Scholar
  158. Strangeland, P. (1996). The Effect of Interviewer Methods and Response Rate on Victim Survey Crime Rates. Australian Institute of Criminology; verfügbar unter: http://www.aic.gov.au/media_library/publications/proceedings/27/stangeland.pdf. Zugegriffen: 01. Juli 2016.
  159. Stuart, E.A. (2010). Matching methods for causal inference: A review and a look forward. Statistical Science, 25, 1-21.Google Scholar
  160. Tourangeau, R., Groves, R.M., Kennedy, C. & Yan, T. (2009). The presentation of a web survey, nonresponse and measurement error among members of web panel. Journal of Official Statistics, 25, 299-321.Google Scholar
  161. Tourangeau, R., Groves, R.M., & Redline, C.D. (2010). Sensitive topics and reluctant respondents. Demonstrating a link between nonresponse and measurement error. Public Opinion Quarterly, 74, 413-432.Google Scholar
  162. Tourangeau, R., Kreuter, F., & Eckman, S. (2015). Motivated misreporting: Shaping answers to reduce survey burden. In U. Engel (Hrsg.), Survey Measurements. Techniques, Data Quality and Sources of Error (S. 24-41). Frankfurt: Campus Verlag.Google Scholar
  163. Tourangeau, R., & McNeeley, M.E. (2003). Measuring crime and crime victimization: Methodological issues. In J.V. Pepper, & C.V. Petrie (Hrsg.), Measurement Problems in Criminal Justice Research (S. 10-42). Washington: National Research Council.Google Scholar
  164. Tourangeau, R., Rips, L.J., & Rasinski, K. (2000). The Psychology of Survey Response. Cambridge: Cambridge University Press.Google Scholar
  165. Tourangeau, R., & Smith, T.W. (1996). Asking sensitive questions: The impact of data collection mode, question format, and question context. Public Opinion Quarterly, 60, 275-304.Google Scholar
  166. Tourangeau, R., Smith, T.W., & Rasinski, K. (1997). Motivation to report sensitive behaviors in surveys: Evidence from a bogus pipeline experiment. Journal of Applied Social Psychology, 27, 209-222.Google Scholar
  167. Tourangeau, R., Steiger, D.M., & Wilson, D. (2002). Self-administered questions by telephone. Evaluating interactive voice response. Public Opinion Quarterly, 66, 265-278.Google Scholar
  168. Tourangeau, R., & Yan, T. (2007). Sensitive questions in surveys. Psychological Bulletin, 133, 859-883.Google Scholar
  169. Triplett, T., Blair, J., Hamilton, T., & Kang, Y.C. (1996). Initial cooperators vs. converted refusers: Are there response behavior differences? In Proceedings of the Survey Research Methods Section of the American Statistical Association (S. 1038-1041). Alexandria: American Statistical Association.Google Scholar
  170. Turner, C.F., Villarroel, MA., Rogers, S.M., Eggleston, E. Ganapathi, L., Roman, A., & Al-Tayyib, A. (2005). Reducing bias in telephone survey estimates of the prevalence of drug use: A randomized trial of telephone audio-CASI. Addiction, 100, 1432-1444.Google Scholar
  171. Tversky, A., & Kahneman, D. (1973). Availability: A heuristic for judging frequency and probability. Cognitive Psychology, 5, 207-232.Google Scholar
  172. Tversky, A., & Kahneman, D. (1974). Judging under uncertainty: Heuristics and biases. Science, 185, 1124-1131.Google Scholar
  173. Tversky, A., & Kahneman, D. (1982). Judgements of and by representativeness. In D. Kahneman, P. Slovic, & A. Tversky (Hrsg.), Judgement under Uncertainty: Heuristics and Biases (S. 84-98). Cambridge: Cambridge University Press.Google Scholar
  174. Ulrick, S. W. (2012). The Oaxaca decomposition generalized to a continuous group variable. Economics Letters 115, 35-37.Google Scholar
  175. van Dijk, J.J.M., Mayhew, P., & Killias, M. (1990). Experiences of Crime across the World: Key Findings from the 1989 International Crime Survey. Deventer: Kluwer Law & Taxation.Google Scholar
  176. Vannieuwenhuyze, J.T.A., & Loosveldt, G. (2012). Evaluating relative mode effects in mixed-mode surveys: three methods to disentangle selection and measurement effects. Sociological Methods & Research, 42, 82-104.Google Scholar
  177. Vannieuwenhuyze, J.T.A., Loosveldt, G., & Molenberghs, G. (2010). A method for evaluating mode effects in mixed-mode surveys. Public Opinion Quarterly, 74, 1027-1045.Google Scholar
  178. Vannieuwenhuyze, J.T.A., Loosveldt, G., & Molenberghs, G. (2014). Evaluating mode effects in mixed-mode survey data using covariate adjustment models. Journal of Official Statistics, 30, 1-21.Google Scholar
  179. Watson, I. (2010). decomp: Stata Module to Conduct a Blinder-Oaxaca Decomposition of Earnings; verfügbar unter: http://fmwww.bc.edu/repec/bocode/d/decomp.ado. Zugegriffen: 01. Juli 2016.
  180. Weichselbaumer, D., & Winter-Ebmer, R. (2005). A meta-analysis of the international gender wage gap. Journal of Economic Surveys, 19, 479-511.Google Scholar
  181. Weisburd, H.F. (2005). The Total Survey Error Approach. A Guide to the New Science of Survey Research. Chicago: University of Chicago Press.Google Scholar
  182. Willimack, D.K., Schuman, H., Pennell, B.-E., & Lepkowski, J.M. (1995). Effects of a prepaid nonmonetary incentive on response rates and response quality in a face-to-face survey. Public Opinion Quarterly, 59, 78-92.Google Scholar
  183. Winship, C., & Harding, D.J. (2008). A mechanism-based approach to the identification of age-period-cohort models. Sociological Methods & Research, 36, 362-401.Google Scholar
  184. Woodward, J. (2002). What is a mechanism? A counterfactual account. Philosophy of Science, 69, 366-377.Google Scholar
  185. Woodward, J. (2003). Making Thing Happen. A Theory of Causal Explanation. Oxford: Oxford University Press.Google Scholar
  186. Wroblewski, A. (2009). Berücksichtigung der Situation von Personen mit gesundheitlichen Beeinträchtigungen in Umfragen. In M. Weichbold, J. Bacher, & C. Wolf (Hrsg.) Umfrageforschung. Herausforderungen und Grenzen. Sonderheft 9 der österreichischen Zeitschrift für Soziologie (S. 317‒332). Wiesbaden: VS Verlag.Google Scholar
  187. Yang, Y., & Land, K.C. (2013). Age-Period-Cohort Analysis. New Models, Methods, and Empirical Applications. Boca Raton: CRC Press.Google Scholar
  188. Young, J. (1988). Risk of crime and fear of crime. A realist critique of survey-based assumptions. In M. Maguire, & J. Pointing (Hrsg.), Victims of Crime: A New Deal? (S. 164-176). Milton Keynes: Open University Press.Google Scholar
  189. Yun, M. (2005a). A simple solution to the identification problem in detailed wage composition. Economic Inquiry, 43, 766-772.Google Scholar
  190. Yun, M. (2005b). Normalized equation and decomposition analysis: Computation and Inference. IZA Discussion Paper Nr. 1822.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.Universität Eichstätt-IngolstadtEichstättDeutschland

Personalised recommendations