Skip to main content

Validity of Research Environments – Comparing Criticality Perceptions Across Research Environments

  • Chapter
  • First Online:
UR:BAN Human Factors in Traffic

Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

  • 1739 Accesses

Abstract

According to standards such as ISO 26262, system controllability for human drivers must be ensured with new driver assistance systems. The choice of an appropriate research environment is a central issue in controllability research and precedes questions such as the criticality of test scenarios and deduction of pass-fail-criteria. The methodological trade-off between research on test tracks and with driving simulators cannot be resolved easily. Although test track research allows for the analysis of human interactions with real vehicle dynamics, the investigation of critical situations with other traffic agents requires considerable effort and is sometimes not feasible. For example, the complexities of real-life urban scenarios cannot be readily replicated on test tracks. Driving simulations do not underlie these restrictions, but limitations concerning visual and proprioceptive feedback raise questions of validity. Within the UR:BAN MV KON project, a study was performed on criticality perceptions towards various metrics (longitudinal and lateral distances and decelerations) across four research environments. A total of five experiments were performed using a dynamic driving simulator, a static driving simulator, a test track vehicle, and a Vehicle-In-the-Loop (VIL), which is a hybrid between a test track vehicle and a driving simulator. In the present chapter, we present results from the series of experiments and show how the results relate to existing validity research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Manstetten, D., Bengler, K., Busch, F., Färber, B., Lehsing, C., Neukum, A., Schendzielorz, T.: “UR:BAN MV” – A German project focusing on human factors to increase traffic safety in urban areas. Paper presented at the 20th ITS World Congress, Tokyo (2013)

    Google Scholar 

  2. ISO 26262: Road vehicles − Functional safety. Geneva: International Organization for Standardization (2011)

    Google Scholar 

  3. RESPONSE Consortium: RESPONSE 3. A PReVENT Project. Code of practice for the design and evaluation of ADAS (2006)

    Google Scholar 

  4. Commision of the European Union: Commision recommendation on safe and efficient in-vehicle information and communication systems: Update of the European Statement of Principles on human machine interface. Off J Eur Union 32, 200–241 (2006)

    Google Scholar 

  5. Mullen, N., Charlton, J., Devlin, A., Bédard, M.: Simulator validity: Behaviors observed on the simulator and on the road. In: Fisher, D.L., Matthew, R., Caird, J.K., Lee, J.D. (eds.) Handbook of Driving Simulation for Engineering, Medicine, and Psychology. CRC Press, Boca Raton (2011)

    Google Scholar 

  6. Bella, F.: Driving simulator for speed research on two-lane rural roads. Accid Analysis Prev 40(3), 1078–1087 (2008)

    Article  MathSciNet  Google Scholar 

  7. Blaauw, G.J.: Driving experience and task demands in simulator and instrumented car: a validation study. Human Factors. J Hum Factors Ergonomics Soc 24(4), 473–486 (1982)

    Article  Google Scholar 

  8. Reed, M.P., Green, P.A.: Comparison of driving performance on-road and in a low-cost simulator using concurrent telephone dialling task. Ergonomics 42, 1015–1037 (1999)

    Article  Google Scholar 

  9. Bella, F.: Validation of a driving simulator for work zone design. Transp Res Rec 1937, 336–340 (2005)

    Article  Google Scholar 

  10. Charlton, J.L., Fildes, B., Oxley, J., Keeffe, J., Odell, M., Verdoon, A.: Driving performance and visual search associated with visual field loss. Paper presented at the International Conference on Traffic and Transport Psychology, Washington, September (2008)

    Google Scholar 

  11. Klee, H., Bauer, C., Radwan, E., Al-Deek, H.: Preliminary validation of driving simulator based on forward speed. Transp Res Rec 1689, 33–39 (1999)

    Article  Google Scholar 

  12. Shinar, D., Ronen, A.: Validation of speed perception and production in a single screen simulator. Adv Transportation Stud (Special Issue) 5, 51–56 (2007). https://trid.trb.org/view.aspx?id=870627

    Google Scholar 

  13. Törnros, J.: Driving behaviour in a real and a simulated road tunnel. A validation study. Accid Analysis Prev 30(4), 497–503 (1998)

    Article  Google Scholar 

  14. Godley, S.T., Triggs, T.J., Fildes, B.N.: Driving simulator validation for speed research. Accid Analysis Prev 44(5), 589–600 (2002)

    Article  Google Scholar 

  15. Riemersma, J.B.J., van der Horst, A.R.A., Heokstra, W.: Driving simulator in evaluation speed-reduction measures. Traffic Eng Control 31, 416–420 (1990)

    Google Scholar 

  16. McAvoy, D.S., Schattler, K.L., Datta, T.K.: Driving simulator validation for nighttime construction work zone devices. Transp Res Rec 2015, 55–63 (2007)

    Article  Google Scholar 

  17. Blana, E.: A survey of driving research simulators around the world. Working Paper, vol. 481. Institute of Transport Studies, University of Leeds, Leeds (1996)

    Google Scholar 

  18. Duncan, B.: Calibration trials of TRL driving simulator. Vis Veh 6, 105–113 (1998)

    Google Scholar 

  19. Harms, L.: Driving performance on a real road and in a driving simulator: Results of a validation study. Vis Veh 5, 19–26 (1996)

    Google Scholar 

  20. Alicandri, E., Roberts, K., Walker, J.: A validation study of the DOT/FHWA highway simulator (HYSIM). Federal Highway Administration, Washington (1986)

    Google Scholar 

  21. Banton, T., Stefanucci, J., Durgin, F., Fass, A., Proffitt, D.: The perception of walking speed in a virtual environment. Presence 14(4), 394–406 (2005)

    Article  Google Scholar 

  22. Colombet, F., Paillot, D., Mérienne, F., Kemeny, A.: Visual scale factor for speed perception. J Comput Inf Sci Eng 11(4), 041010-1–041010-6 (2011)

    Article  Google Scholar 

  23. Kemeny, A., Panerai, F.: Evaluating perception in driving simulation experiments. Trends Cogn. Sci. (Regul. Ed.) 7(1), 31–37 (2003)

    Article  Google Scholar 

  24. Gouy, M., Diels, C., Reed, N., Stevens, A., Burnett, G.: Preferred or adopted time headway? A driving simulator study. Proc Int Conf Ergonomics Hum Factors, 153–159 (2013). doi:10.1201/b13826-38

  25. Ichikawa, K.: Considering safe distance between moving vehicles. Memoirs Fac Educ 53, 123–138 (2003)

    Google Scholar 

  26. Brackstone, M., Waterson, B., McDonald, M.: Determinants of following distance in congested traffic. Transportation Res Part F 12(2), 131–142 (2009)

    Article  Google Scholar 

  27. Piao, J., McDonald, M.: Low speed car following behaviour from floating vehicle data. Proc IEEE Intell Veh Symp, 462–467 (2003). doi:10.1109/IVS.2003.1212955

  28. Knospe, W., Santen, L., Schadschneider, A., Schreckenberg, M.: Single-vehicle data of highway traffic: microscopic description of traffic phases. Phys Rev E 65(5), 056133–056149 (2002)

    Article  MATH  Google Scholar 

  29. Ayres, T.J., Li, L., Schleuning, D., Young, D.: Preferred time-headway of highway drivers. IEEE Intell Transportation Syst Conf Proc, 826–829 (2001). doi:10.1109/ITSC.2001.948767

  30. Stam, T.: Headway performance in the University of Twente driving simulator. A validation study (Master thesis). University of Twente, Amsterdam (2013)

    Google Scholar 

  31. Blana, E., Golias, J.: Differences between vehicle lateral displacement on the road and in a fixed-base simulator. Human Factors. J Hum Factors Ergonomics Soc 44(2), 303–313 (2002)

    Article  Google Scholar 

  32. van der Horst, R.: Speed reducing measures for 80 km/h roads. In: Risser, R., Jonsson, T. (eds.) Proceedings of the 9th ICTCT Workshop. ICTCT, Zagreb (1996)

    Google Scholar 

  33. Reichel, M.: Situationsanalyse für fortschrittliche Fahrerassistenzsysteme (Doctoral dissertation). TU Braunschweig, Braunschweig (2013)

    Google Scholar 

  34. Blana, E., Golias, J.: Behavioural validation of a fixed-base driving simulator. Proceedings of the Driving Simulation Conference. Paris, pp 227–241 (1999). https://www.driving-simulation.com/site/proceedings-of-the-driving-simulation-conference/

    Google Scholar 

  35. Hoffman, J.D., Lee, J.D., Brown, T.L., McGehee, D.V.: Comparison of driver braking responses in a high-fidelity simulator and on a test track. Transp Res Rec 1803(1), 59–65 (2002)

    Article  Google Scholar 

  36. McGehee, D.V., Mazzae, E.N., Baldwin, G.H.S.: Driver reaction time in crash avoidance research: Validation of a driving simulator study on a test track. Proceedings of the Human Factors and Ergonomics Society Annual Meeting (2000)

    Google Scholar 

  37. Neukum, A., Naujoks, F., Kappes, S., Wey, T.: Kontrollierbarkeit unerwarteter Eingriffe eines Bremsassistenzsystems aus Perspektive des Folgeverkehrs. In: Färber, B. (ed.) 9. Workshop Fahrerassistenzsysteme, pp. 115–125. Uni-DAS, Darmstadt (2014)

    Google Scholar 

  38. Fecher, N., Regh, F., Habenicht, S., Hoffmann, J., Winner, H.: Test- und Bewertungsmethoden für Sicherheitssysteme der Bahnführungsebene. Automatisierungstechnik 56(11), 592–600 (2008)

    Article  Google Scholar 

  39. Breuer, J.: Bewertungsverfahren von Fahrerassistenzsystemen. In: Winner, H., Hakuli, S., Wolf, G. (eds.) Handbuch Fahrerassistenzsysteme, pp. 55–68. Viewweg+Teubner, Wiesbaden (2012)

    Chapter  Google Scholar 

  40. Karl, I., Berg, G., Rüger, F., Färber, B.: Driving behavior and simulator sickness while driving the Vehicle in the Loop. Validation of longitudinal driving behavior. IEEE Intell Transportation Syst Mag 23, 42–57 (2013)

    Article  Google Scholar 

  41. Andersen, G.J., Sauer, C.W.: Optical information for car following: The driving by visual angle (DVA) model. Human Factors. J Hum Factors Ergonomics Soc 49(5), 878–896 (2007)

    Article  Google Scholar 

  42. Berg, G., Karl, I., Färber, B.: Vehicle in the Loop. Validierung der virtuellen Welt. VDI-Berichte, vol. 2134. VDI, Düsseldorf, pp 143–154 (2011). Der Fahrer im 21. Jahrhundert. Fahrer, Fahrerunterstützung und Bedienbarkeit

    Google Scholar 

  43. Neumann-Cosel, K., Dupuis, M., Weiss, C.: Virtual test drive. Provision of a consistent tool-set for [d,h,s,v]-in-the-loop. Paper presented at the Driving Simulation Conference, Monaco, 2009 (2009)

    Google Scholar 

  44. Neukum, A., Lübbeke, T., Krüger, H.P., Mayser, C., Steinle, J.: ACC-Stop&Go: Fahrerverhalten an funktionalen Systemgrenzen. In: Maurer, M., Stiller, C. (eds.) 5. Workshop Fahrerassistenzsysteme – FAS 2008, pp. 141–150. fmrt, Karlsruhe (2008)

    Google Scholar 

  45. Neukum, A., Krüger, H.-P.: Fahrerreaktionen bei Lenksystemstörungen – Untersuchungsmethoden und Bewertungskriterien. VDI-Berichte, vol. 1791., pp 297–318 (2003)

    Google Scholar 

  46. Agresti, A.: Categorical Data Analysis. John Wiley, Hoboken (2002)

    Book  MATH  Google Scholar 

  47. Long, J.S.: Regression models for categorical and limited dependent variables. Sage, Thousand Oaks (1997)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Purucker, C., Schneider, N., Rüger, F., Frey, A. (2018). Validity of Research Environments – Comparing Criticality Perceptions Across Research Environments. In: Bengler, K., Drüke, J., Hoffmann, S., Manstetten, D., Neukum, A. (eds) UR:BAN Human Factors in Traffic. ATZ/MTZ-Fachbuch. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-15418-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-15418-9_25

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-15417-2

  • Online ISBN: 978-3-658-15418-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics