Skip to main content

Abstract

In the previous chapters, we have highlighted the evolution of computing environments from single systems to parallel architectures, clusters, grids, service-oriented systems and clouds. This line of evolution is a purely digital one without considering the form factor of computing. From the physical perspective, there is another line of evolution which puts the form factor and communication channels into the centre. Starting with mini-PCs and embedded computers, nowadays distributed computing can be performed in wearable computers and body-area networks, tiny nodes organised as fogs or smart dust, connected to the Internet of Things, and in the “Smart Grid”, using various protocols. This chapter therefore outlines physical computing paradigms and compares the computing, storage and communication capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bundesministerium für Wirtschaft und Energie. online: http://bmwi.de/.

  2. CISCO Grid Operation Solutions. online: http://www.cisco.com/.

  3. Cisco 6lab - The place to monitor IPv6 adoption. online: http://6lab.cisco.com/stats/, 2015.

  4. Comité Européen de Normalisation Électrotechnique. online: http://www.cencenelec.eu/.

  5. Energieinformationsnetze und -Systeme: Bestandsaufnahme und Entwicklungstendenzen, 2010. 128 p.; in German; ITG@VDE.

    Google Scholar 

  6. EU Commission: Expert group on the security and resilience of communication networks and information systems for smart grids. online: http://www.smartgrids.eu/.

  7. Google IPv6 Statistics. online: http://www.google.ch/ipv6/statistics.html, 2015.

  8. Ibh it-service gmbh. online: https://www.ibh.de/, 2015.

  9. IEEE Smart Grid Conceptual Model. online: http://smartgrid.ieee.org/.

  10. Kiwigrid Smart Grid Management Platform. online: http://www.kiwigrid.com/en/products-solutions.html, 2016.

  11. NIST Framework and Roadmap for Smart Grid Interoperability Standards, Rel. 2.0. Technical Report 1108R2, National Institute of Standards and Technology, USA, February 2012.

    Google Scholar 

  12. OECD Digital Economy Outlook. online: https://dx.doi.org/10.1787“%2F888933225312, May 2015.

  13. Projects of the Chair of Computer Networks of TUD. online: http://www.rn.inf.tu-dresden.de/.

  14. Raspberry Pi Projects. online: http://elinux.org/RPi˙Projects, 2016.

  15. Raspberry Pi Trading Ltd Raspberry Pi 3 Model B - Single Board Computer. online: https://fccid.io/2ABCB-RPI32, 2016.

  16. Siemens AG. online: ttp://www.siemens.com/.

  17. Smartgrid.gov. online: https://www.smartgrid.gov/, 2015.

  18. Technisch-wissenschaftlicher Verband der Elektrotechnik und Elektronik. online: http://www.vde.com/.

  19. Uptime Institute Reports 2011–2014. online: https://uptimeinstitute.com.

  20. Pekka Abrahamsson, Sven Helmer, Nattakarn Phaphoom, Lorenzo Nicolodi, Nick Preda, Lorenzo Miori, Matteo Angriman, Juha Rikkilä, Xiaofeng Wang, Karim Hamily, and Sara Bugoloni. Affordable and Energy-Efficient Cloud Computing Clusters: The Bolzano Raspberry Pi Cloud Cluster Experiment. In UsiNg and building ClOud Testbeds (UNICO) workshop at the 5th IEEE International Conference on Cloud Computing Technology and Science (CloudCom), volume 2, pages 170–175, December 2013. Bristol, United Kingdom.

    Google Scholar 

  21. Jörg Benze. Smart Grid: Normung und Standardisierung, 2012. FH Salzburg IKT Forum.

    Google Scholar 

  22. Brussels EU-CEN-CENELEC-ETSI SG Coordination Group. Smart Grid Reference Architecture. Technical Report M/490, CENELEC, November 2012. p. 107.

    Google Scholar 

  23. S. Guy, S. Marvin, W. Medd, and T. Moss. Urban Infrastructure in Transition: Networks, Buildings, Plans. Earthscan/Routledge London, 2012. 240 p.

    Google Scholar 

  24. Thomas J. Harrison and Thomas J. Pierce. System integrity in small real-time computer systems. In Proceedings of the national computer conference and exposition (AFIPS), June 1973.

    Google Scholar 

  25. Horst Kuchling. Taschenbuch der Physik. Hanser Verlag, 2014. 21st edition, 711 p., in German.

    Google Scholar 

  26. R. Lehnert. Smart Grid Communications. In Proceedings of IEEE ELNANO Conference, Kiev, Ukraine, April 2013.

    Google Scholar 

  27. Andriy Luntovskyy. Integration Concepts for Computer-Aided Design Tools for Wired and Wireless Local-Area Networks. Shaker Verlag Aachen, 2008.

    Google Scholar 

  28. A. Luntovskyy. Distributed applications technologies. DUIKT Publisher, 2010. 474 p.; Monograph in Ukrainian.

    Google Scholar 

  29. Andriy Luntovskyy, Dietbert Gütter, and Igor Melnyk. Planung und Optimierung von Rechnernetzen: Methoden, Modelle, Tools für Entwurf, Diagnose und Management im Lebenszyklus von drahtgebundenen und drahtlosen Rechnernetzen. Springer/Vieweg + Teubner Verlag Wiesbaden, 2011. 411 p.; in German.

    Google Scholar 

  30. A. Luntovskyy, M. Klymash, and A. Semenko. Distributed services for telecommunication networks: Ubiquitous computing and cloud technologies. Lvivska Politechnika, Lviv, Ukraine, 2012. 368 p.; Monograph in Ukrainian.

    Google Scholar 

  31. Andriy Luntovskyy, Josef Spillner, and Volodymyr Vasyutynskyy. Energy-EfficientăNetwork Services as SmartăGridăIssue. In Soft Computing in Computer and Information Science / Advances in Intelligent Systems and Computing, volume 342, pages 293–308. Springer International Publishing Switzerland, March 2015.

    Google Scholar 

  32. Harald Lutz and Ulrich Terrahe. Future Thinking Kongress: Das Rechenzentrum der Zukunft.

    Google Scholar 

  33. V. Melnyk. Modeling of the temperature modes for the cathodes of high voltage glow discharge based on heat balance equation. Bulletin of Kherson National University of Technology, Issue 3 (39), 2010.

    Google Scholar 

  34. Igor Melnyk and Andriy Luntovskyy. „Green Computing“ and the Simplified Waste Heat Transport Models. In 20th International Conference on Advanced Computer Systems (ACS), 2016.

    Google Scholar 

  35. J. Momoh. Smart Grid: Fundamentals of Design and Analysis. John Wiley & Sons NY, 2012. 216 p.

    Google Scholar 

  36. Bryan Nicholson, Becky Harrison, and Lee Cogan. The future of the grid – evolving to meet america’s needs. online: https://www.smartgrid.gov/files/Northeast-Region-Workshop-Summary-Final.pdf, May 2014.

  37. J. Ploennigs, V. Vasyutynskyy, and K. Kabitzsch. Comparative Study of Energy-Efficient Sampling Approaches for Wireless Control Networks. IEEE Transactions of Industrial Informatics (TIT), 6(3):416–424, August 2010.

    Google Scholar 

  38. Alexander Schill and Thomas Springer. Verteilte Systeme - Grundlagen und Basistechnologien. Springer-Verlag, second edition, 2012. 433 p.; in German.

    Google Scholar 

  39. Rene Marcel Schretzmann, Jens Struckmeier, and Christof Fetzer. Cloud&Heat Technologies. online: https://www.cloudandheat.com/, 2011/2014.

  40. Matt Stansberry. 2014 Data Center Industry Survey. online: https://journal.uptimeinstitute.com/2014-data-center-industry-survey/, 2015.

  41. L. Stobbe, M. Proske, H. Zedel, R. Hintemann, J. Clausen, and S. Beucker. Entwicklung des IKT-bedingten Strombedarfs in Deutschland. Studie im Auftrag des Bundesministeriums für Wirtschaft und Energie / Fraunhofer IZM and Borderstep Institute, 2015.

    Google Scholar 

  42. Andrew S. Tanenbaum and David J. Wetherall. Computernetzwerke. Pearson Studium, fifth edition, 2012. 1040 p.; in German.

    Google Scholar 

  43. S. Tugay. Mathematic modeling of the physical processes on the surface of the cooled cathodes in the electron sources of high voltage glow discharge. Electron Simulation, Vol. 34, No. 6, 2012.

    Google Scholar 

  44. Katherine Tweed. China Pushes Past U.S. in Smart Grid Spending. IEEE Spectrum, Energywise Blog, February 2014.

    Google Scholar 

  45. V. Vasyutynskyy and K. Kabitzsch. Event-based Control: Overview and Generic Model. In IEEE International Workshop on Factory Communication Systems (WFCS), pages 271–279, Nancy, France, May 2010.

    Google Scholar 

  46. Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog Computing. Platform and Applications. Dept. of Computer Science, College of William and Mary, 2015.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andriy Luntovskyy .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Luntovskyy, A., Spillner, J. (2017). Smart Grid, Internet of Things and Fog Computing. In: Architectural Transformations in Network Services and Distributed Systems. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-14842-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-658-14842-3_5

  • Published:

  • Publisher Name: Springer Vieweg, Wiesbaden

  • Print ISBN: 978-3-658-14840-9

  • Online ISBN: 978-3-658-14842-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics