Epigenetics pp 83-94 | Cite as

Epigenetics: Biological, Medical, Social, and Ethical Challenges

Part of the Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society book series (TEWG)


Epigenetics, a relatively young discipline in science, is expected to grow steadily and add a fund of knowledge to the life sciences in the future. Regarding the fields of biology and medicine, theoretical questions about epigenetics concern its status in the nexus between nucleotide sequence and gene regulation. Uncertainties for the social sciences relate to the absence of knowledge and the absence of abilities as sociological categories. Ethical problems particularly pertain to the topics of communication about scientific knowledge and about risk as well as to intergenerational justice, reproduction, and the responsibilities of governments and administrations in society. At the moment, a focus of ethical reflection is laid on the education of the public. Information in the media should be adapted to the knowledge that has already been achieved in the sciences. For this purpose, recommendations by learned societies and scholarly organizations can provide standards for orientation.


Pregnant Woman Epigenetic Mechanism Ethical Problem Epigenetic Effect Fetal Alcohol Spectrum Disorder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beauchamp, T. L., & Childress, J. F. (2013). Principles of biomedical ethics. Oxford: Oxford University Press.Google Scholar
  2. Bird, A. (2007). Perceptions of epigenetics. Nature, 447, 396–398.CrossRefGoogle Scholar
  3. Brukamp, K. (2013). Nichtwissen in der Neuromedizin: Wissenschaftliches Wissen und Nichtwissen bei gegenwärtigen Neurointerventionen im Gehirn. In C. Peter, & D. Funcke (Eds.), Wissen an der Grenze. Zum Umgang mit Ungewissheit und Unsicherheit in der modernen Medizin (pp. 309–338). Frankfurt am Main: Campus.Google Scholar
  4. Bundesinstitut für Risikobewertung (Eds.), Rehaag, R., Tils, G., Röder, B., Ulbig, E., Kurzenhäuser-Carstens, S., Lohmann, M., Böl, G.-F. (2013). Zielgruppengerechte Risikokommunikation zum Thema Nahrungsergänzungsmittel. Abschlussbericht. Berlin: BfR-Wissenschaft 03/2013. Last access March 2016.
  5. Chadwick, R., & O’Connor, A. (2013). Epigenetics and personalized medicine: Prospects and ethical issues. Personalized Medicine, 10(5), 463–471.CrossRefGoogle Scholar
  6. Dolinoy, D. C. (2008). The agouti mouse model: An epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutrition Reviews, 66(Suppl 1), 7–11.CrossRefGoogle Scholar
  7. Dupras, C., Ravitsky, V., & Williams-Jones, B. (2012). Epigenetics and the environment in bioethics. Bioethics, 28(7), 327–334.CrossRefGoogle Scholar
  8. Eccleston, A., DeWitt, N., Gunter, C., Marte, B., & Nath, D. (2007). Epigenetics. Nature, 447, 395.CrossRefGoogle Scholar
  9. Feil, R., & Fraga, M. F. (2012). Epigenetics and the environment: Emerging patterns and implications. Nature Reviews Genetics, 13, 97–109.Google Scholar
  10. Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447, 433–440.CrossRefGoogle Scholar
  11. Feldmann, R., Löser, H., & Weglage, J. (2007). Fetales Alkoholsyndrom (FAS). Monatsschrift Kinderheilkunde, 9, 853–865.CrossRefGoogle Scholar
  12. Fraser, P., & Bickmore, W. (2007). Nuclear organization of the genome and the potential for gene regulation. Nature, 447, 413–417.CrossRefGoogle Scholar
  13. Guibet Lafaye, C. (2013). Ethical issues raised by research in epigenetics. Presentation at the UNESCO Chair in Bioethics 9th World Conference (November 19–21, 2013). Last access March 2016.
  14. Hedlund, M. (2010). Epigenetic responsibility. Papper att presenteras på Statsvetenskapliga förbundets årsmöte Göteborg 30 september–2 oktober 2010. Statsvetenskapliga institutionen, Lunds universitet. Last access March 2016.
  15. Ito, T., Ando, H., & Handa, H. (2011). Teratogenic effects of thalidomide: Molecular mechanisms. Cellular and Molecular Life Sciences, 68, 1569–1579.CrossRefGoogle Scholar
  16. Jirtle, R. L., & Skinner, M. K. (2007). Environmental epigenomics and disease susceptibility. Nature Reviews Genetics, 8, 253–262.CrossRefGoogle Scholar
  17. Kay, M. A. (2011). State-of-the-art gene-based therapies: The road ahead. Nature Reviews Genetics, 12, 316–328.CrossRefGoogle Scholar
  18. Kerwin, A. (1993). None too solid: Medical ignorance. Science Communication, 15, 166–185.CrossRefGoogle Scholar
  19. Knoppers, B. M. (2009). Genomics and policymaking: From static models to complex systems? Human Genetics, 125(4), 375–379.CrossRefGoogle Scholar
  20. Koletzko, B. (2013). Ernährung in der Schwangerschaft. Für das Leben des Kindes prägend. Deutsches Ärzteblatt, 110(13), A 612–A 613.Google Scholar
  21. Landgraf, M., & Heinen, F. (2012). S3-Leitlinie Diagnostik des Fetalen Alkoholsyndroms. Kurzfassung. AWMF-Registernr.: 022–025. Last access March 2016.
  22. Landgraf, M. N., Nothacker, M., Kopp, I. B., & Heinen, F. (2013). Diagnose des Fetalen Alkoholsyndroms. Deutsches Ärzteblatt, 110(42), 703–710.Google Scholar
  23. Loi, M., Del Savio, L., & Stupka, E. (2013). Social epigenetics and equality of opportunity. Public Health Ethics, 6(2), 142–153.CrossRefGoogle Scholar
  24. Merton, R. K. (1968). Social theory and social structure. New York: Free Press.Google Scholar
  25. Nicolosi, G., & Ruivenkamp, G. (2012). The epigenetic turn. Some notes about the epistemological change of perspective in biosciences. Medicine, Health Care, and Philosophy, 15(3), 309–319.Google Scholar
  26. Pickersgill, M., Niewöhner, J., Müller, R., Martin, P., & Cunningham-Burley, S. (2013). Mapping the new molecular landscape: Social dimensions of epigenetics. New Genetics and Society, 32(4), 429–447.CrossRefGoogle Scholar
  27. Portela, A., & Esteller, M. (2010). Epigenetic modifications and human disease. Nature Biotechnology, 28(10), 1057–1068.CrossRefGoogle Scholar
  28. Rodenhiser, D., & Mann, M. (2006). Epigenetics and human disease: Translating basic biology into clinical applications. CMAJ, 174(3), 341–348.CrossRefGoogle Scholar
  29. Rothstein, M. A. (2013). Legal and ethical implications of epigenetics. In R. L. Jirtle, & F. L. Tyson, Environmental epigenomics in health and disease. Epigenetics and complex diseases (pp. 297–308). Berlin/Heidelberg: Springer.Google Scholar
  30. Rothstein, M. A., Cai, Y., & Marchant, G. E. (2009). The ghost in our genes: Legal and ethical implications of epigenetics. Health Matrix Clevel, 19(1), 1–62.Google Scholar
  31. Tycko, J., Fields, D., Cabrera, D., Charawi, M., & Kaptur, B. (2013). The potential of epigenetic therapy and the need for elucidation of risks. Penn Bioethics Journal VII (ii): 1–4. Philadelphia: University of Pennsylvania. 2013 Last access March 2016.
  32. Wehling, P. (2006). Im Schatten des Wissens? Perspektiven der Soziologie des Nichtwissens. Konstanz: UVK.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.Duale Hochschule Baden-Württemberg DHBW, Sozialwesen/GesundheitHeidenheimGermany
  2. 2.Universität Rostock, Geschichte der MedizinRostockGermany

Personalised recommendations