Epigenetics pp 41-54 | Cite as

Epigenetics and Genetic Determinism (in Popular Science)

Part of the Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society book series (TEWG)


When the regulative influence of the environment on genes is seen in the postgenomic discourse as evidence against genetic determinism, epigenetics seems to solve the problem. This interpretation is premature. The argument of gene–environment interaction refutes only a simple version of genetic determinism, whereas a more complex version of it not only persists, but is actually promoted by the mask of the “solution”. The reason for this covert genetic determinism is an asymmetric perception of gene–environment interaction. Often popular scientific representations employ different information criteria. While genetic information is there understood in the sense of an intentional instruction, epigenetic information is thought to apply only to its regulation. For a comprehensive refutation of genetic determinism, reference to the interactions between genes and environment is insufficient and therefore the whole process of the development of information must be taken into account.


Base Sequence Central Dogma Genetic Determinism Epigenetic Landscape Epigenetic Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bartram, C. R., Beckmann, F. B., Breyer, F., Fey, G., Fonatsch, C., Irrgang, et al. (2000). Probleme genetischer Determiniertheit. In C. R. Bartram, F. B. Beckmann, F. Breyer, G. Fey, C. Fonatsch, B. Irrgang, et al. (Eds.), Humangenetische Diagnostik. Wissenschaftliche Grundlagen und gesellschaftliche Konsequenzen (pp. 5–50). Berlin: Springer.Google Scholar
  2. Burian, R. M. (2004). Molecular epigenesis, molecular pleiotropy, and molecular gene definitions. History and Philosophy of the Life Sciences, 26, 59–80.CrossRefGoogle Scholar
  3. Cooney, C. A. (2007). Epigenetics—DNA-based mirror of our environment? Disease Markers, 23, 121–137.CrossRefGoogle Scholar
  4. Crick, F. (1958). On protein synthesis. Symposia of the Society for Experimental Biology, 7, 139–163.Google Scholar
  5. Der Spiegel. (2010). Der Sieg über die Gene. Klüger, gesünder, glücklicher: Wie wir unser Erbgut überlisten können. Der Spiegel, 32, 1.Google Scholar
  6. Fischer, A. (2013). Die Epigenetik neurodegenerativer Erkrankungen. Spektrum Wiss, 7, 30–38.Google Scholar
  7. Fraga, M. F., Ballestar, E., Paz, M. F., Ropero, S., Setien, F., Ballestar, M. L., et al. (2005). Epigenetic differences arise during the lifetime of monozygotic twins. Proceedings of the National Academy of Sciences of the United States of America, 102, 10604–10609.CrossRefGoogle Scholar
  8. Galton, F. (1875). The history of twins as a criterion of the relative powers of nature and nurture. Journal of the Anthropological Institute of Great Britain and Ireland, 5, 391–406.CrossRefGoogle Scholar
  9. Godfrey, K. M., Lillycrop, K. A., Burdge, G. C., Gluckman, P. D., & Hanson, M. A. (2007). Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatric Research, 61, 5R–10R.CrossRefGoogle Scholar
  10. Griffith, P. E. (2006). The fearless vampire conservator: Philip Kitcher, genetic determinism, and the informational gene. In E. Neumann-Held & C. Rehmann-Sutter (Eds.), Genes in development: Re-reading the molecular paradigm (pp. 175–198). Durham: Duke University Press.CrossRefGoogle Scholar
  11. Griffith, P. E., & Knight, R. D. (1998). What is the developmentalist challenge? Philosophy of Science, 65, 253–258.CrossRefGoogle Scholar
  12. Griffith, P. E., & Stotz, K. (2013). Genetics and philosophy—An introduction. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  13. Holliday, R. (1990). Mechanisms for the control of gene activity during development. Biological Reviews of the Cambridge Philosophical Society, 4, 431–471.CrossRefGoogle Scholar
  14. Jablonka, E., & Lamb, M. J. (2002). The changing concept of epigenetics. Annals of the New York Academy of Sciences, 981, 82–96.CrossRefGoogle Scholar
  15. Kitcher, P. (2001). Battling the undead: How (and how not) to resist genetic determinism. In R. Singh, K. Krimbas, D. Paul, & J. Beatty (Eds.), Thinking about evolution: Historical, philosophical and political perspectives (pp. 396–414). Cambridge: Cambridge University Press.Google Scholar
  16. Lemke, T. (2002). Mutationen des Gendiskurses. Der genetische Determinismus nach dem Humangenomprojekt. Leviathan: Berliner Zeitschrift für Sozialwissenschaft, 30, 400–425.Google Scholar
  17. Mahner, M., & Bunge, M. A. (2000). Philosophische grundlagen der biologie. Berlin: Springer.CrossRefGoogle Scholar
  18. Markert, D. (2008). Das Jungbrunnenwunder. Der Markert-Plan für 120 Jahre Lebenskraft. Hannover: Schlütersche.Google Scholar
  19. Midgley, M. (1984). Reductivism, fatalism and sociobiology. Journal of Applied Philosophy, 1, 107–114.CrossRefGoogle Scholar
  20. Oyama, S. (1985). The ontogeny of information: Developmental systems and evolution. Cambridge: Cambridge University Press.Google Scholar
  21. Riggs, A. D., Russo, V. E. A., & Martienssen, R. A. (1996). Epigenetic mechanisms of gene regulation. Plainview: Cold Spring Harbor.Google Scholar
  22. Schuol, S. (2014). Kritik der Eigenverantwortung: Die Epigenetik im öffentlichen Präventionsdiskurs zum Metabolischen Syndrom. In V. Lux & T. Richter (Eds.), Vererbt, codiert, übertragen: Kulturen der Epigenetik (pp. 271–282). Berlin: De Gruyter.Google Scholar
  23. Staege, B. (2014). Was ist Epigenetik? Accessed May 8, 2016.
  24. Sterelny, K., & Griffith, P. E. (1999). Sex and death: An introduction to the philosophy of biology. Chicago: University of Chicago Press.Google Scholar
  25. Stotz, K. (2006). Molecular epigenesis: Distributed specificity as a break in the central dogma. History and Philosophy of the Life Sciences, 28, 533–548.Google Scholar
  26. Tappeser, B., & Hoffmann, A.-K. (2006). Das überholte Paradigma der Gentechnik. Zum zentralen Dogma der Molekularbiologie fünfzig Jahre nach der Entdeckung der DNA-Struktur. Umwelt, Medizin, Gesellschaft, 19, 17–22.Google Scholar
  27. Thomas, W. I., & Thomas, D. S. (1928). The child in America: Behavior problems and programs. New York: Knopf.Google Scholar
  28. van Speybroeck, L. (2002). From epigenesis to epigenetics—The case of C. H, Waddington. Annals of the New York Academy of Sciences, 981, 61–81.CrossRefGoogle Scholar
  29. Vivamus. (2014). Anti-aging via epigenetik. Wissenschaftliche Hintergründe von age LOC und R2. Accessed May 8, 2016.
  30. Waddington, C. H. (1952). The evolution of developmental systems. In D. A. Herbert (Ed.), Proceedings of the Twenty-Eighth Meeting of the Australian and New Zealand Association for the Advancement of Science (pp. 155–159). Brisbane: A.H Tucker Government Printer.Google Scholar
  31. Waddington, C. H. (1957). The Strategy of the genes: A discussion of some aspects of theoretical biology. London: Allen and Unwin.Google Scholar
  32. Waddington, C. H. (1968). The basic ideas of biology. In Ders. (Eds.), Towards a Theoretical Biology. An IUBS symposium (pp. 1–32). Edinburgh: Edinburgh University Press.Google Scholar
  33. Youngson, N. A., & Whitelaw, E. (2008). Transgenerational epigenetic effects. Annual Review of Genomics and Human Genetics, 9, 233–257.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.National Center for Tumor Diseases (NCT) HeidelbergHeidelbergGermany

Personalised recommendations