Schwingungen pp 537-596 | Cite as

Aktive Schwingungs- und Schallbeeinflussung

Chapter

Zusammenfassung

Die Idee, störende Schwingungen durch Überlagern genau gegenphasiger Schwingungen zu kompensieren, ist nicht neu, ließ sich aber in vielen Bereichen erst mit modernen Techniken realisieren. Die historische Entwicklung und der gegenwärtige Stand werden in diesem Überblick mit vielen Literaturnachweisen dokumentiert. Technische Anwendungen finden sich zur Schiffsstabilisierung und Schwingungsisolierung, in der aktiven und adaptiven Optik, zur Schallisolation und Lärmminderung, zur Kontrolle nichtlinearer dynamischer Systeme, zur Strömungsbeeinflussung, zur Geräuschminderung in Lüftungsanlagen, in aktiven Kopfhörern, zur Übersprechkompensation in Stereophonieanlagen und in vielen anderen Bereichen. Dabei setzt man überwiegend adaptive Digitalfilter ein. Zusatzquellen können die Schallabstrahlung reduzieren, wobei die Wechselwirkung der Quellen zu beachten ist. Ein interessanter Aspekt ist auch die aktive Impedanzbeeinflussung.

Literatur

Lehrbücher

  1. 1.
    P.A. Nelson, S.J. Elliott: Active Control of Sound. Academic Press 1992, ISBN: 0-12-515425-0. Google Scholar
  2. 2.
    M. O. Tokhi, R. R. Leitch: Active Noise Control. Clarendon Press 1992, ISBN: 978-019852436. Google Scholar
  3. 3.
    C. R. Fuller, S. J. Elliott, P. A. Nelson: Active Control of Vibration. Academic Press 1996, ISBN: 0-12-269440-6. Google Scholar
  4. 4.
    S. M. Kuo, D. R. Morgan: Active Noise Control Systems. Algorithms and DSP Implementations. Wiley 1996, ISBN: 0-471-13424-4. Google Scholar
  5. 5.
    C. Hansen, S. D. Snyder: Active Control of Noise and Vibration. CRC Press 1996, ISBN: 978-0-419193906. Google Scholar
  6. 6.
    S. D. Snyder: Active Noise Control Primer. Springer-Verlag 2000, ISBN: 978-0-387-98951-8. Google Scholar
  7. 7.
    M. O. Tokhi, S. M. Veres: Active Sound and Vibration Control: Theory and Applications. Institution of Engineering and Technology 2002, ISBN: 978-0-85296-038-7. Google Scholar
  8. 8.
    S. J. Elliott: Signal Processing for Active Control. Elsevier 2001, ISBN: 978-0-12-237085-4. Google Scholar
  9. 9.
    C. Hansen, S. D. Snyder et al.: Active Control of Noise and Vibration. 2 Volume set. CRC Press, 2nd ed. 2012, ISBN: 978-0-415590617. Google Scholar

Einzelnachweise

  1. 10.
    A. Mallock: A Method of Preventing Vibration in Certain Classes of Steamships. Trans. Inst. Naval Architects 47 (1905) 227–230. Google Scholar
  2. 11.
    H. Hort: Beschreibung und Versuchsergebnisse ausgeführter Schiffsstabilisierungsanlagen. Jahrb. Schiffbautechn. Ges. 35 (1934) 292–312. Google Scholar
  3. 12.
    J. F. Allan: The Stabilization of Ships by Activated Fins. Trans. Inst. Naval Architects 87 (1945) 123–159. Google Scholar
  4. 13.
    Anon.: Perfectionnements apportés aux paliers pour corps tournants, notamment pour ensembles devant tourner a l’interieur d’une enceinte étanche. Französisches Patent FR 1 186 527. Anmeldung: 18. 11. 1957. Erteilung: 23. 2. 1959. Google Scholar
  5. 14.
    M. Mano: Ship Design Considerations for Minimal Vibration. Ship Technology and Research (STAR) 10th Symposium of the Society of Naval Architects and Marine Engineers (SNAME) (1985), Proc.: pp. 143–156. Google Scholar
  6. 15.
    D. Greco et al.: Active vibration control of flexible materials found within printing machines. J. Sound Vib. 300 (2007) 831–846. MathSciNetMATHCrossRefGoogle Scholar
  7. 16.
    J. C. Snowdon: Vibration and Shock in Damped Mechanical Systems. Wiley 1968, Chapter 4: Vibrations of the Dynamic Absorber. Google Scholar
  8. 17.
    H. Ruscheweyh, T. Galemann, C. Marsico: Ein frequenzgeregelter dynamischer Schwingungsdämpfer zur Dämpfung von Bauwerksschwingungen. VDI-Berichte 695 (1988) 19–34. Google Scholar
  9. 18.
    C. González Díaz, C. Paulitsch, P. Gardonio: Active damping control unit using a small scale proof mass electrodynamic actuator. J. Acoust Soc. Am. 124 (2008) 886–897. Google Scholar
  10. 19.
    C. González Díaz, C. Paulitsch, P. Gardonio: Smart panel with active damping units. Implementation of decentralized control. J. Acoust Soc. Am. 124 (2008) 898–910. Google Scholar
  11. 20.
    M. Holdhusen, K. A. Cunefare: Investigation of the Two-state, Maximum Work Extraction Switching Rule of a State-switched Absorber for Vibration Control. J. Intelligent Material Syst. Struct. 19 (2008) 1245–1250. CrossRefGoogle Scholar
  12. 21.
    H. L. Sun et al.: A novel kind of active resonator absorber and the simulation on its control effort. J. Sound Vib. 300 (2007) 117–125. CrossRefGoogle Scholar
  13. 22.
    L. Meirovitch: Dynamics and Control of Structures. Wiley 1990, ISBN: 978-0-471-62858-1. Google Scholar
  14. 23.
    K. Ramesh Kumar, S. Narayanan: Active vibration control of beams with optimal placement of piezoelectric sensor/actuator pairs. Smart Materials and Structures 17(5) (2008), Paper No. 055008. Google Scholar
  15. 24.
    H. Ohta, J. Naruse, T. Hirata: Vibration Reduction of Magnetic Disk Drive Mechanism. (1st Report, Vibration Reduction of Rotary Actuator Mechanism). Bull. Japan Soc. Mech. Engrs. (JSME) 28(241) (1985) 1489–1496. CrossRefGoogle Scholar
  16. 25.
    S.-M. Swei, P. Gao, R. Lin: A dynamic analysis for the suspension structure in hard disk drives using piezofilm actuators. Smart Materials and Structures 10 (2001) 409–413. CrossRefGoogle Scholar
  17. 26.
    T. Atsumi et al.: Integrated Design of a Controller and a Structure for Head-positioning in Hard Disk Drives. J. Vibration and Control 12 (2006) 713–736. MATHCrossRefGoogle Scholar
  18. 27.
    S.-C. Lim, S.-B. Choi: Vibration control of an HDD disk-spindle system utilizing piezoelectric bimorph shunt damping: I. Dynamic analysis and modeling of the shunted drive. Smart Materials and Structures 16 (2007) 891–900. CrossRefGoogle Scholar
  19. 28.
    S.-C. Lim, S.-B. Choi: Vibration control of an HDD disk-spindle system using piezoelectric bimorph shunt damping: II. Optimal design and shunt damping implementation. Smart Materials and Structures 16 (2007) 901–908. CrossRefGoogle Scholar
  20. 29.
    H. Yamada, M. Sasaki, Y. Nam: Active Vibration Control of a Micro-Actuator for Hard Disk Drives using Self-Sensing Actuator. J. Intelligent Material Syst. Struct. 19 (2008) 113–123. CrossRefGoogle Scholar
  21. 30.
    S. Lim, T.-Y. Jung: Dynamics and robust control of a high speed optical pickup. J. Sound Vib. 221 (1999) 607–621. CrossRefGoogle Scholar
  22. 31.
    P. C.-P. Chao, J.-S. Huang, C.-L. Lai: Robust sliding-mode control design of a four-wire-type optical lens actuator for high-density CD/DVD pickups. Proc. of ACTIVE 2002, 1177–1188. Google Scholar
  23. 32.
    C. C. Hsiao, T. S. Liu, S. H. Chien: Adaptive inverse control for the pickup head flying height of near-field optical disk drives. Smart Materials and Structures 15 (2006) 1632–1640. CrossRefGoogle Scholar
  24. 33.
    M. Barton: Auf der Jagd nach den Wellen. dSPACE Magazin 2 (2008) 20–25. Google Scholar
  25. 34.
    L. Gaul: Aktive Beeinflussung von Fügestellen in mechanischen Konstruktionselementen und Strukturen. Deutsche Patentanmeldung DE 197 02 518 A1. Anmeldung: 24. 1. 1997. Veröffentlichung: 12. 6. 1997. Google Scholar
  26. 35.
    P. Buaka, P. Micheau, P. Masson: Optimal energy dissipation in a semi-active friction device. J. Acoust. Soc. Am. 117 (2005) 2602 (Abstract). Google Scholar
  27. 36.
    Tang, D.; Gavin, H. P.; Dowell, E. H.: Study of airfoil gust response alleviation using an electro-magnetic dry friction damper. Part 1: Theory, and Part 2: Experiment. J. Sound Vib. 269 (2004) 853–874 and 875–897. Google Scholar
  28. 37.
    I. Tuzcu, L. Meirovitch: Control of flying flexible aircraft using control surfaces and dispersed piezoelectric actuators. Smart Materials and Structures 15 (2006) 893–903. CrossRefGoogle Scholar
  29. 38.
    R. Freymann: Dynamic Interactions Between Active Control Systems and a Flexible Aircraft Structure. Proc. 27th AIAA/ASME/SAE SDM Conference (1986) pp. 517–524, AIAA Paper 86-0960. Google Scholar
  30. 39.
    H. H. Heller, W. R. Splettstoesser, K.-J. Schultz: Helicopter Rotor Noise Research in Aeroacoustic Wind Tunnels – State of the Art and Perspectives. NOISE-93, International Noise and Vibration Control Conference, St. Petersburg (1993). Proc.: Vol. 4, pp. 39–60. Google Scholar
  31. 40.
    Y. Chen, V. Wickramasinghe, D. G. Zimcik: Experimental evaluation of the Smart Spring for helicopter vibration suppression through blade root impedance control. Smart Materials and Structures 14 (2005) 1066–1074. MATHCrossRefGoogle Scholar
  32. 41.
    R. L. Clark, G. P. Gibbs: A novel approach to feedforward higher-harmonic control. J. Acoust. Soc. Am. 96 (1994) 926–936. CrossRefGoogle Scholar
  33. 42.
    S. R. Viswamurthy, R. Ganguli: Using the Complete Authority of Multiple Active Trailing-edge Flaps for Helicopter Vibration Control. J. Vibration and Control 14 (2008) 1175–1199. MATHCrossRefGoogle Scholar
  34. 43.
    A. Rader et al.: Optimization of Piezoelectric Actuator Configuration on a Flexible Fin for Vibration Control using Genetic Algorithms. J. Intelligent Material Syst. Struct. 18 (2007) 1015–1033. CrossRefGoogle Scholar
  35. 44.
    J.-C. Chiou, et al.: Micro-optical image stabilizer. U.S. Patentanmeldung US 2008/0273092 A1. Veröffentlichung: 6. 11. 2008. Priorität (TW): 2. 5. 2007. Google Scholar
  36. 45.
    G. A. Lesieutre, G. K. Ottman, H. F. Hofmann: Damping as a result of piezoelectric energy harvesting. J. Sound Vib. 269 (2004) 991–1001. CrossRefGoogle Scholar
  37. 46.
    S. Jiang et al.: Performance of a piezoelectric bimorph for scavenging vibration energy. Smart Materials and Structures 14 (2005) 769–774. CrossRefGoogle Scholar
  38. 47.
    F. Grotelüschen: Kunstmuskel als Schwingungsdämpfer. Weiter vorn – Das Fraunhofer-Magazin 2/12 (2012) 48–49. Google Scholar
  39. 48.
    J. Kowal et al.: Energy Recovering in Active Vibration Isolation System – Results of Experimental Research. J. of Vibration and Control 14 (2008) 1075–1088. Google Scholar
  40. 49.
    L. Wang, F. G. Yuan: Vibration energy harvesting by magnetostrictive material. Smart Materials and Structures 17 (2008) Paper No. 045009. Google Scholar
  41. 50.
    S. R. Anton, H. A. Sodano: A review of power harvesting using piezoelectric materials (2003–2006). Smart Materials and Structures 16 (2007) R1–R21. CrossRefGoogle Scholar
  42. 51.
    M. G. Tehrani, S. J. Elliott: Nonlinear Damping for Energy Harvesting. AIA-DAGA 2013, Programmheft: S. 235. Google Scholar
  43. 52.
    P. J. Sloetjes, A. de Boer: Vibration Reduction and Power Generation with Piezoceramic Sheets Mounted to a Flexible Shaft. J. Intelligent Material Syst. Struct. 19 (2008) 25–34. CrossRefGoogle Scholar
  44. 53.
    A. Erturk, D. J. Inman: On Mechanical Modeling of Cantilevered Piezoelectric Vibration Energy Harvesters. J. of Intelligent Material Syst. Struct. 19 (2008) 1311–1325. CrossRefGoogle Scholar
  45. 54.
    K. Nakano, S. J. Elliott, E. Rustighi: A unified approach to optimal conditions of power harvesting using electromagnetic and piezoelectric transducers. Smart Materials and Structures 16 (2007) 948—958. Google Scholar
  46. 55.
    V. R. Challa et al.: A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Materials and Structures 17 (2008) Paper No. 015035. Google Scholar
  47. 56.
    D. J. Morris et al.: A resonant frequency tunable, extensional mode piezoelectric vibration harvesting mechanism. Smart Materials and Structures 17(6) (2008) Paper No. 065021. Google Scholar
  48. 57.
    D. Heyland et al.: The adaptive wing project (DLR): Survey on targets and recent results from active/adaptive structures viewpoint. In: Tenth Int. Conf. on Adaptive Structures and Technologies (ICAST ’99), Proc. (2000): pp. 178–185. Google Scholar
  49. 58.
    H. A. Sodano, J.-S. Bae: Eddy Current Damping in Structures. The Shock and Vibration Digest 36 (2004) 469–478. CrossRefGoogle Scholar
  50. 59.
    H. A. Sodano, D. J. Inman: Non-contact vibration control system employing an active eddy current damper. J. Sound Vib. 305 (2007) 596–613. CrossRefGoogle Scholar
  51. 60.
    R. Buckminster Fuller: Tensile-integrity systems. U.S. Patent US 3,063,521. Anmeldung: 31. 8. 1959. Erteilung: 13. 11. 1962. Google Scholar
  52. 61.
    S. Djouadi et al.: Active Control of Tensegrity Systems. J. of Aerospace Engng. 11 (1998) 37–44. CrossRefGoogle Scholar
  53. 62.
    E. Fest, K. Shea, I. F. C. Smith: Active Tensegrity Structure. J. of Structural Engng. 130 (2004) 1454–1465. CrossRefGoogle Scholar
  54. 63.
    B. Domer, I. F. C. Smith: An Active Structure that Learns. J. of Computing in Civil Engng. 19 (2005) 16–24. CrossRefGoogle Scholar
  55. 64.
    B. de Jager, R. E. Skelton: Input-output selection for planar tensegrity models. IEEE Trans. Control Syst. Technol. 13 (2005) 778–785. CrossRefGoogle Scholar
  56. 65.
    B. Adam, I. F. C. Smith: Tensegrity Active Control: Multiobjective Approach. J. of Computing in Civil Engng. 21 (2007) 3–10. CrossRefGoogle Scholar
  57. 66.
    M. Ganesh Raja, S. Narayanan: Active control of tensegrity structures under random excitation. Smart Materials and Structures 16 (2007) 809–817. Google Scholar
  58. 67.
    J. Tschesche et al.: Simulation of smart wolf tone elimination. AIA-DAGA 2013, Programmheft: S. 238. Google Scholar
  59. 68.
    J. Tschesche et al.: Vergleich der Wirkung adaptronischer Wolfstöter. DAGA 2014, Programmheft: S. 86. Google Scholar
  60. 69.
    P. Neubauer et al.: Aktive Minderung des Cello-Wolftons durch bedarfsgerechte Geschwindigkeitsrückführung. DAGA 2015, Programmheft: S. 333–334. Google Scholar
  61. 70.
    S. R. Viswamurthy, A. K. Rao, R. Ganguli: Dynamic hysteresis of piezoceramic stack actuators used in helicopter vibration control: experiments and simulations. Smart Materials and Structures 16 (2007) 1109–1119. CrossRefGoogle Scholar
  62. 71.
    S.-H. Lee et al.: Bracing Systems for Installation of MR Dampers in a Building Structure. J. Intelligent Material Syst. Struct. 18 (2007) 1111–1120. CrossRefGoogle Scholar
  63. 72.
    U. Kushnir, O. Rabinovitch: Non-linear Piezoelectric and Ferroelectric Actuators – Analysis and Potential Advantages. J. Intelligent Material Syst. Struct. 19 (2008) 1077–1088. CrossRefGoogle Scholar
  64. 73.
    O. M. Fein, L. Gaul, U. Stöbener: Vibration Reduction of a Fluid-loaded Plate by Modal Control. J. Intelligent Material Syst. Struct. 16 (2005) 541–552. CrossRefGoogle Scholar
  65. 74.
    G. E. Simmers Jr. et al.: Improved Piezoelectric Self-sensing Actuation. J. Intelligent Material Syst. Struct. 15 (2004) 941–953. CrossRefGoogle Scholar
  66. 75.
    K. Makihara, J. Onoda, K. Minesugi: A self-sensing method for switching vibration suppression with a piezoelectric actuator. J. Smart Materials and Structures 16 (2007) 455–461. CrossRefGoogle Scholar
  67. 76.
    J. Kim, J.-H. Kim: Multimode shunt damping of piezoelectric smart panel for noise reduction. J. Acoust. Soc. Am. 116 (2004) 942–948. CrossRefGoogle Scholar
  68. 77.
    D. Guyomar et al.: Wave reflection and transmission reduction using a piezoelectric semipassive nonlinear technique. J. Acoust. Soc. Am. 119 (2006) 285–298. CrossRefGoogle Scholar
  69. 78.
    A. Belloli et al.: Structural Vibration Control via R-L Shunted Active Fiber Composites. J. Intelligent Material Syst. Struct. 18 (2007) 275–287. CrossRefGoogle Scholar
  70. 79.
    T. Anderson et al.: Response prediction of switched inductor/piezoelectric vibration suppression. Smart Materials and Structures 16 (2007) 135–139. CrossRefGoogle Scholar
  71. 80.
    J. Lin: An active–passive absorber by using hierarchical fuzzy methodology for vibration control. J. Sound Vib. 304 (2007) 752–768. MathSciNetMATHCrossRefGoogle Scholar
  72. 81.
    L. J. Zhao, H. S. Kim, J. Kim: Noise Reduction Using Smart Panel with Shunt Circuit. AIAA J. 45 (2007) 79–89. CrossRefGoogle Scholar
  73. 82.
    A. Belloli, P. Ermanni: Optimum placement of piezoelectric ceramic modules for vibration suppression of highly constrained structures. Smart Materials and Structures 16 (2007) 1662–1671. CrossRefGoogle Scholar
  74. 83.
    U. Andreaus, M. Porfiri: Effect of Electrical Uncertainties on Resonant Piezoelectric Shunting. J. Intelligent Material Syst. Struct. 18 (2007) 477–485. CrossRefGoogle Scholar
  75. 84.
    N. S. Goo et al.: Behaviors and Performance Evaluation of a Lightweight Piezo-Composite Curved Actuator. J. Intelligent Material Syst. Struct. 12 (2001) 639–646. CrossRefGoogle Scholar
  76. 85.
    A. Suhariyono, N. S. Goo, H. C. Park: Use of Lightweight Piezo-composite Actuators to Suppress the Free Vibration of an Aluminum Beam. J. Intelligent Material Syst. Struct. 19 (2008) 101–112. CrossRefGoogle Scholar
  77. 86.
    M. C. Ray, R. C. Batra: A single-walled carbon nanotube reinforced 1–3 piezoelectric composite for active control of smart structures. Smart Materials and Structures 16 (2007) 1936–1947. CrossRefGoogle Scholar
  78. 87.
    S. Ahlawat, B. R. Vidyashankar, B. Bhattacharya: Closed-form studies of a new hybrid damping technique using an active layer and hard-coated damping alloys. Smart Materials and Structures 16 (2007) 626–633. CrossRefGoogle Scholar
  79. 88.
    N. Ganesan, R. Sethuraman: Dynamic modeling of active constrained layer damping of composite beam under thermal environment. J. Sound Vib. 305 (2007) 728–749. CrossRefGoogle Scholar
  80. 89.
    B. A. Reddy, M. C. Ray: Optimal Control of Smart Functionally Graded Plates Using Piezoelectric Fiber Reinforced Composites. J. Vibration and Control 13 (2007) 795–814. MATHCrossRefGoogle Scholar
  81. 90.
    R. Mirzaeifar, H. Bahai, S. Shahab: Active control of natural frequencies of FGM plates by piezoelectric sensor/actuator pairs. Smart Materials and Structures 17(4) (2008) Paper No. 045003. Google Scholar
  82. 91.
    O. Rabinovitch: Piezoelectric Control of Edge Debonding in Beams Strengthened with Composite Materials: Part I – Analytical Modeling. J. Composite Materials 41 (2007) 525–546. CrossRefGoogle Scholar
  83. 92.
    M. Shahinpoor: Conceptual design, kinematics and dynamics of swimming robotic structures using ionic polymer gel muscles. Smart Materials and Structures 1 (1992) 91–94. CrossRefGoogle Scholar
  84. 93.
    M. Shahinpoor et al.: Ionic polymer-metal composites (IPMC) as biomimetic sensors, actuators and artificial muscles – a review. Smart Materials and Structures 7 (1998) R15–R30. CrossRefGoogle Scholar
  85. 94.
    D. Bandopadhya, B. Bhattacharya, A. Dutta: An active vibration control strategy for a flexible link using distributed ionic polymer metal composites. Smart Materials and Structures 16 (2007) 617–625. CrossRefGoogle Scholar
  86. 95.
    D. Bandopadhya, B. Bhattacharya, A. Dutta: Active Vibration Control Strategy for a Single-Link Flexible Manipulator Using Ionic Polymer Metal Composite. J. Intelligent Material Syst. Struct. 19 (2008) 487–496. CrossRefGoogle Scholar
  87. 96.
    Z. Chen et al.: A dynamic model for ionic polymer–metal composite sensors. Smart Materials and Structures 16 (2007) 1477–1488. CrossRefGoogle Scholar
  88. 97.
    S.-J. Moon et al.: Structural vibration control using linear magnetostrictive actuators. J. Sound Vib. 302 (2007) 875–891. CrossRefGoogle Scholar
  89. 98.
    Y. Nakamura et al.: Application of Active Micro-vibration Control System using a Giant Magnetostrictive Actuator. J. Intelligent Material Syst. Struct. 18 (2007) 1137–1148. CrossRefGoogle Scholar
  90. 99.
    K. Kuhnen, M. Schommer, H. Janocha: Integral feedback control of a self-sensing magnetostrictive actuator. Smart Materials and Structures 16 (2007) 1098–1108. CrossRefGoogle Scholar
  91. 100.
    F. T. Calkins, A. B. Flatau, M. J. Dapino: Overview of Magnetostrictive Sensor Technology. J. Intelligent Material Syst. Struct. 18 (2007) 1057–1066. CrossRefGoogle Scholar
  92. 101.
    H. Janocha (ed.): Aktoren: Grundlagen und Anwendungen. Springer-Verlag 1992, ISBN: 978-3-540-547075. Google Scholar
  93. 102.
    S. Saadat et al.: An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Materials and Structures 11 (2002) 218–229. CrossRefGoogle Scholar
  94. 103.
    J. Heinonen et al.: Controlling stiffness of a frame spring by changing the boundary condition with an SMA actuator. Computers and Structures 86 (2008) 398–406. CrossRefGoogle Scholar
  95. 104.
    G. Song, N. Ma: Robust control of a shape memory alloy wire actuated flap. Smart Materials and Structures 16(6) (2007) N51–N57. CrossRefGoogle Scholar
  96. 105.
    O. E. Ozbulut et al.: A fuzzy model of superelastic shape memory alloys for vibration control in civil engineering applications. Smart Materials and Structures 16 (2007) 818–829. CrossRefGoogle Scholar
  97. 106.
    R. F. Gordon: The properties and applications of shape memory polyurethanes. Mater. Technol. 8 (1993) 254–258. Google Scholar
  98. 107.
    N. S. Goo, I. H. Paik, K. J. Yoon: The durability of a conducting shape memory polyurethane actuator. Smart Materials and Structures 16 (2007) N23–N26. CrossRefGoogle Scholar
  99. 108.
    Anon.: Intelligente Lösungen. Chemiewerkstoffe machen das Auto umweltverträglicher. In: Chemie mit Chlor. Bayer AG, Konzernzentrale Öffentlichkeitsarbeit, Leverkusen, April 1995, S. 78–79. Google Scholar
  100. 109.
    K. Makihara, J. Onoda, K. Minesugi: Numerical Analysis of Powerful Shock Absorber Utilizing Particle-Dispersion ER Fluid. Trans. Japan Soc. Aeron. Space Sci. 49(166) (2007) 203–210. CrossRefGoogle Scholar
  101. 110.
    S. Morishita, J. Mitsui: An Electronically Controlled Engine Mount Using Electro-Rheological Fluid. SAE Special Publication 936 (1992) 97–103. Google Scholar
  102. 111.
    J.-Y. Yeh: Vibration control of a sandwich annular plate with an electrorheological fluid core layer. Smart Materials and Structures 16 (2007) 837–842. CrossRefGoogle Scholar
  103. 112.
    J. Nikitczuk, B. Weinberg, C. Mavroidis: Control of electro-rheological fluid based resistive torque elements for use in active rehabilitation devices. Smart Materials and Structures 16 (2007) 418–428. CrossRefGoogle Scholar
  104. 113.
    M. Taki, T. Mori, S. Murakami: Sound Attenuating System. U.S. Patent US 5,347,585. Anmeldung: 10. 9. 1991. Erteilung: 13. 9. 1994. Google Scholar
  105. 114.
    S. J. Dyke et al.: Modeling and control of magnetorheological dampers for seismic response reduction. Smart Materials and Structures 5 (1996) 565–575. CrossRefGoogle Scholar
  106. 115.
    J. Wang, G. Meng: Experimental study on stability of an MR fluid damper-rotor-journal bearing system. J. Sound Vib. 262 (2003) 999–1007. CrossRefGoogle Scholar
  107. 116.
    Hyun-Ung Oh: Experimental demonstration of an improved magneto-rheological fluid damper for suppression of vibration of a space flexible structure. Smart Materials and Structures 13 (2004) 1238–1244. CrossRefGoogle Scholar
  108. 117.
    S. Sassi et al.: An innovative magnetorheological damper for automotive suspension: from design to experimental characterization. Smart Materials and Structures 14 (2005) 811–822. CrossRefGoogle Scholar
  109. 118.
    L. Chen, C. H. Hansen: Active Vibration Control of a Magnetorheological Sandwich Beam. Acoustics 2005 – Australian Acoustical Society Annual Conference, Proc.: pp. 93–98. Google Scholar
  110. 119.
    Q. Zhou, S. R. K. Nielsen, W. L. Qu: Semi-active control of three-dimensional vibrations of an inclined sag cable with magnetorheological dampers. J. Sound Vib. 296 (2006) 1–22. CrossRefGoogle Scholar
  111. 120.
    M. Liu, G. Song, H. Li: Non-model-based semi-active vibration suppression of stay cables using magneto-rheological fluid dampers. Smart Materials and Structures 16 (2007) 1447–1452. CrossRefGoogle Scholar
  112. 121.
    H.-X. Deng, X.-L. Gong, L.-H. Wang: Development of an adaptive tuned vibration absorber with magnetorheological elastomer. Smart Materials and Structures 15 (2006) N111–N116. CrossRefGoogle Scholar
  113. 122.
    H.-X. Deng, X.-L. Gong: Adaptive Tuned Vibration Absorber based on Magnetorheological Elastomer. J. Intelligent Material Syst. Struct. 18 (2007) 1205–1210. CrossRefGoogle Scholar
  114. 123.
    C. Carmignani, P. Forte, E. Rustighi: Design of a novel magneto-rheological squeeze-film damper. Smart Materials and Structures 15 (2006) 164–170. CrossRefGoogle Scholar
  115. 124.
    L. Pahlavan, J. Rezaeepazhand: Dynamic response analysis and vibration control of a cantilever beam with a squeeze-mode electrorheological damper. Smart Materials and Structures 16 (2007) 2183–2189. CrossRefGoogle Scholar
  116. 125.
    D. C. Batterbee et al.: Magnetorheological landing gear: 1. A design methodology. und: 2. Validation using experimental data. Smart Materials and Structures 16 (2007) 2429–2440 und 2441–2452. Google Scholar
  117. 126.
    G. Aydar et al.: A Low Force Magneto-rheological (MR) Fluid Damper: Design, Fabrication and Characterization. J. Intelligent Material Syst. Struct. 18 (2007) 1155–1160. CrossRefGoogle Scholar
  118. 127.
    H. Sahin et al.: Full-Scale Magnetorheological Fluid Dampers for Heavy Vehicle Rollover. J. Intelligent Material Syst. Struct. 18 (2007) 1161–1167. CrossRefGoogle Scholar
  119. 128.
    F. Ikhouane, S. J. Dyke: Modeling and identification of a shear mode magnetorheological damper. Smart Materials and Structures 16 (2007) 605–616. CrossRefGoogle Scholar
  120. 129.
    S. W. Or et al.: Development of Magnetorheological Dampers with Embedded Piezoelectric Force Sensors for Structural Vibration Control. J. Intelligent Material Syst. Struct. 9 (2008) 1327–1338. CrossRefGoogle Scholar
  121. 130.
    S. S. Deshmukh, G. H. McKinley: Adaptive energy-absorbing materials using field-responsive fluid-impregnated cellular solids. Smart Materials and Structures 16 (2007) 106–113. CrossRefGoogle Scholar
  122. 131.
    P. Blom, L. Kari: Smart audio frequency energy flow control by magneto-sensitive rubber isolators. Smart Materials and Structures 17(1) (2008), Paper No. 015043. Google Scholar
  123. 132.
    J. Melcher: Der Trick der Bienen. Piezowaben – eine bionische Innovation in der Adaptronik. DLR Nachrichten 119 (2008) 36–39. Google Scholar
  124. 133.
    S. Hurlebaus, L. Gaul: Smart structure dynamics – a Review. Mechanical Systems and Signal Processing 20 (2006) 255–281. CrossRefGoogle Scholar
  125. 134.
    J. Melcher, A. Büter: Adaptive Structures Technology for Structural Acoustic Problems. 1st Joint CEAS/AIAA Aeronautics Conference (16th AIAA Aeroacoustics Conference) 1995, Proc.: pp. 1213–1220. Google Scholar
  126. 135.
    H.-P. Monner, E. J. Breitbach, H. Hanselka: Recent Results and Future of the German Major Project Adaptronics. 13th Intl. Conf. on Adaptive Structures and Technologies (ICAST 2002), Proc. (2004): pp. 259–269. Google Scholar
  127. 136.
    F. Grotelüschen: Mikro-Chip im Alu-Gewand. Fraunhofer-Magazin 2 (2007) 60–61. Google Scholar
  128. 137.
    D. L. Edberg, A. H. von Flotow: Progress Toward a Flight Demonstration of Microgravity Isolation of Transient Events. World Space Congress, 43rd Congress of the Intnl. Astronaut. Federation (1992), Paper IAF-92-0781. Google Scholar
  129. 138.
    G. J. Stein: A Driver’s Seat with Active Suspension of Electropneumatic Type. ASME J. Vibration and Acoustics 119 (1997) 230–235. CrossRefGoogle Scholar
  130. 139.
    S.-B. Choi, Y.-M. Han: Vibration control of electrorheological seat suspension with human-body model using sliding mode control. J. Sound Vib. 303 (2007) 391–404. CrossRefGoogle Scholar
  131. 140.
    S.-B. Choi et al.: Field Test on Vibration Control of Vehicle Suspension System Featuring ER Shock Absorbers. J. Intelligent Material Syst. Struct. 18 (2007) 1169–1174. CrossRefGoogle Scholar
  132. 141.
    D. Weeks: Aktiv im Gelände. Entwicklung aktiver Fahrzeugfederungen für Offroad-Anwendungen. dSPACE Magazin 2/2012, 32–35. Google Scholar
  133. 142.
    R. Wimmel et al.: Aktive Lärmreduzierung bei Diesellokomotiven: Schwingungs- und Schallminderung bei Bahnsystemen. In: RAIL-noise 33 (2011), III. Internationales Symposium zur Bahn-Akustik, pp. 5–26. Näheres: www.eras.de, info@eras.de.
  134. 143.
    U. Weltin: Aktive Schwingungskompensation bei Verbrennungsmotoren. Fortschrittsberichte VDI, Reihe 12 (1993) Nr. 179. Google Scholar
  135. 144.
    G. Kim, R. Singh: A study of passive and adaptive hydraulic engine mount systems with emphasis on non-linear characteristics. J. Sound Vib. 179 (1995) 427–453. CrossRefGoogle Scholar
  136. 145.
    L. Maack, J. Stäbler: Active Body Control in Production. dSPACE NEWS, Fall 2000, pp. 2–3. Google Scholar
  137. 146.
    C.-M. Lee, V. N. Goverdovskiy, A. I. Temnikov: Design of springs with „negative“ stiffness to improve vehicle driver vibration isolation. J. Sound Vib. 302 (2007) 865–874. CrossRefGoogle Scholar
  138. 147.
    H. Atzrodt et al.: Umsetzung und Erprobung von aktiven Lagern im Fahrwerksbereich. DAGA 2012, Programmheft: S. 322. Google Scholar
  139. 148.
    S. Arzanpour, M. F. Golnaraghi: A Novel Semi-active Magnetorheological Bushing Design for Variable Displacement Engines. J. Intelligent Material Syst. Struct. 19 (2008) 989–1003. CrossRefGoogle Scholar
  140. 149.
    R. Maier, M. Bebesel: Helicopter Interior Noise Reduction. dSPACE NEWS, Fall 2000, pp. 6–7. Google Scholar
  141. 150.
    S. Asiri, A. M. Baz, D. J. Pines: Active periodic struts for a gearbox support system. Smart Materials and Structures 15 (2006) 1707–1714. MATHCrossRefGoogle Scholar
  142. 151.
    Informationen: Eras GmbH Göttingen, www.eras.de und info@eras.de.
  143. 152.
    J. Wang et al.: Active vibration control of a plate-like structure with discontinuous boundary conditions. Smart Materials and Structures 15 (2006) N51–N60. CrossRefGoogle Scholar
  144. 153.
    M. Jaensch, M. U. Lampérth: Development of a multi-degree-of-freedom micropositioning, vibration isolation and vibration suppression system. Smart Materials and Structures 16 (2007) 409–417. CrossRefGoogle Scholar
  145. 154.
    M. Jaensch, M. U. Lampérth: Investigations into the stability of a PID-controlled micropositioning and vibration attenuation system. Smart Materials and Structures 16 (2007) 1066–1075. CrossRefGoogle Scholar
  146. 155.
    D. Stewart,: A platform with six degrees of freedom. Proc. IMechE 180 (1965) 371–386. CrossRefGoogle Scholar
  147. 156.
    A. Preumont et al.: A six-axis single-stage active vibration isolator based on Stewart platform. J. Sound Vib. 300 (2007) 644–661. CrossRefGoogle Scholar
  148. 157.
    Y. Meyer et al.: Active isolation of electronic micro-components with piezoelectrically transduced silicon MEMS devices. Smart Materials and Structures 16 (2007) 128–134. CrossRefGoogle Scholar
  149. 158.
    Y. Meyer, M. Collet: Mixed control for robust vibration isolation: numerical energy comparison for an active micro suspension device. Smart Materials and Structures 16 (2007) 1361–1369. CrossRefGoogle Scholar
  150. 159.
    S.-B. Choi et al.: Dynamic Characteristics of Three-axis Active Mount Featuring Piezoelectric Actuators. J. Intelligent Material Syst. Struct. 19 (2008) 1053–1066. CrossRefGoogle Scholar
  151. 160.
    K. Plaza: Semiactive control strategies for a fully suspended bicycle. Mechanics 24 (2005) 135–139. Google Scholar
  152. 161.
    J. J. Ro et al.: Flexural Vibration Control of the Circular Handlebars of a Bicycle by Using MFC Actuators. J. Vibration and Control 13 (2007) 969–987. CrossRefGoogle Scholar
  153. 162.
    C. Olmi, G. Song, Y. L. Mo: An innovative and multi-functional smart vibration platform. Smart Materials and Structures 16 (2007) 1302–1309. CrossRefGoogle Scholar
  154. 163.
    N. R. Petersen: Design of large scale tuned mass dampers. In: H. H. E. Leipholz (ed.): Structural Control. North-Holland Publ. Co. 1980, pp. 581–596. Google Scholar
  155. 164.
    J. C. H. Chang, T. T. Soong: The use of aerodynamic appendages for tall building control. In: H. H. E. Leipholz (ed.): Structural Control. North-Holland Publ. Co. 1980, pp. 199–210. Google Scholar
  156. 165.
    M. Weickgenannt, S. Neuhäuser: Das Dach der Zukunft. Anpassungsfähige Tragwerke erlauben es Ingenieuren, extrem leichte Bauwerke zu konstruieren. Spektrum der Wissenschaft, Nov. 2012, 18–20. Google Scholar
  157. 166.
    M. Weickgenannt et al.: Architektur mit Köpfchen. Regelungskonzepte für ultraleichte Bauwerke. dSPACE Magazin 2013-01, 28–33. Google Scholar
  158. 167.
    T. T. Soong, H. G. Natke: From Active Control to Active Structures. VDI-Berichte 695 (1988) 1–18. Google Scholar
  159. 168.
    K. Hanahara, Y. Tada: Dynamics of Geometry Adaptive Truss with Wire Member Actuators. In: 13th International Conference on Adaptive Structures and Technologies (ICAST 2002), Potsdam 2002. Proc. (2004): pp. 403–412. Google Scholar
  160. 169.
    M. Liu, G. Song, J. Ou: Investigation of vibration mitigation of stay cables incorporated with superelastic shape memory alloy dampers. Smart Materials and Structures 16 (2007) 2202–2213. CrossRefGoogle Scholar
  161. 170.
    Y. L. Xu, H. J. Zhou,: Damping cable vibration for a cable-stayed bridge using adjustable fluid dampers. J. Sound Vib. 306 (2007) 349–360. CrossRefGoogle Scholar
  162. 171.
    M. Izumi: Control of Structural Vibration — Past, Present and Future. International Symposium on Active Control of Sound and Vibration, Tokyo, JP (1991), Proc.: pp. 195–200. Google Scholar
  163. 172.
    Q. S. Li et al.: Combinatorial optimal design of number and positions of actuators in actively controlled structures using genetic algorithms. J. Sound Vib. 270 (2004) 611–624. MathSciNetMATHCrossRefGoogle Scholar
  164. 173.
    R. Guclu, H. Yazici: Fuzzy Logic Control of a Non-linear Structural System against Earthquake Induced Vibration. J. Vibration and Control 13 (2007) 1535–1551. MATHCrossRefGoogle Scholar
  165. 174.
    Chih-Cherng Ho, Chih-Kao Ma: Active vibration control of structural systems by a combination of the linear quadratic Gaussian and input estimation approaches. J. Sound Vib. 301 (2007) 429–449. CrossRefGoogle Scholar
  166. 175.
    L. Huo et al.: \(H_{\infty}\) robust control design of active structural vibration suppression using an active mass damper. Smart Materials and Structures 17(1) (2008), Paper No. 015021. Google Scholar
  167. 176.
    H.-J. Lee et al.: An Experimental Study of Semiactive Modal Neuro-control Scheme Using MR Damper for Building Structure. J. Intelligent Material Syst. Struct. 19 (2008) 1005–1015. CrossRefGoogle Scholar
  168. 177.
    D. Shook et al.: A comparative study in the semi-active control of isolated structures. Smart Materials and Structures 16 (2007) 1433–1446. CrossRefGoogle Scholar
  169. 178.
    A.-P. Wang, Y.-H. Lin: Vibration control of a tall building subjected to earthquake excitation. J. Sound Vib. 299 (2007) 757–773. CrossRefGoogle Scholar
  170. 179.
    F. Hara, H. Shibata: Experimental Study on Active Suppression by Gas Bubble Injection for Earthquake Induced Sloshing in Tanks. Japan Soc. Mech. Eng. (JSME) Intnl. J. 30(260) (1987) 318–323. Google Scholar
  171. 180.
    D. Sakamoto, N. Oshima, T. Fukuda: Tuned sloshing damper using electro-rheological fluid. Smart Materials and Structures 10 (2001) 963–969. CrossRefGoogle Scholar
  172. 181.
    C.-Y. Chang et al.: Modified Fuzzy Variable Structure Control Method to the Crane System with Control Deadzone Problem. J. Vibration and Control 14 (2008) 953–969. MATHCrossRefGoogle Scholar
  173. 182.
    Internet-Seiten von ISYS. Google Scholar
  174. 183.
    L. Fuhrmann: Gegen die Schwingung. Das Geheimnis schneller und zugleich präziser Robotersysteme. DLR Magazin 130 (Juni 2011) 13–15. Google Scholar
  175. 184.
    F. Merkle: Aktive und adaptive Optik in der Astronomie. Neue Technologien für zukünftige Großteleskope. Physikalische Blätter 44 (1988) 439–446. CrossRefGoogle Scholar
  176. 185.
    B. Schwarzschild: First of the Twin 10-Meter Keck Telescopes Starts Doing Astronomy. Physics Today 46(10) (Oct. 1993) 17–18. CrossRefGoogle Scholar
  177. 186.
    R. Q. Fugate et al.: Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star. Nature 353 (Sept. 12, 1991) 144–146. Google Scholar
  178. 187.
    Ch. Baranec, B. J. Bauman, M. Lloyd-Hart: Concept for a laser guide beacon Shack-Hartmann wave-front sensor with dynamically steered subapertures. Optics Lett. 30 (2005) 693–695. CrossRefGoogle Scholar
  179. 188.
    G. P. Collins: Making Stars to See Stars: DOD Adaptive Optics Work is Declassified. Physics Today 45(2) (Feb. 1992) 17–21. Comments: G. Cooper: Has Defense Research Held Science Back? Physics Today 45(7) (July 1992) 13–14. Google Scholar
  180. 189.
    A. Finkbeiner: Klare Sicht für Astronomen. Spektrum der Wissenschaft, Aug. 2015, 42–46. Google Scholar
  181. 190.
    B. Schwarzschild: Adaptive Optics at the New 8-Meter Gemini Telescope. Physics Today 52(9) (Sept. 1999) 23. Google Scholar
  182. 191.
    T. G. Hawarden: Extremely Large Ground-based Telescopes (ELTs): Performance Comparisons with 8-m class Space Telescopes. The Institute of Space and Astronautical Science, Sagamihara, JP, Report SP No. 14 (Dec. 2000) 249–256. Google Scholar
  183. 192.
    R. Gilmozzi: Riesenteleskope der Zukunft. Spektrum der Wissenschaft, Aug. 2006, 28–36. Google Scholar
  184. 193.
    Q. Yang, C. Ftaclas, M. Chun: Wavefront correction with high-order curvature adaptive optics systems. J. Optical Soc. Am. (JOSA) A 23 (2006) 1375–1381. Google Scholar
  185. 194.
    T. Feder: New telescope in Turkey. Physics Today 67(10) (Oct. 2014) 26–27. CrossRefGoogle Scholar
  186. 195.
    B. Schwarzschild: Infrared Adaptive Optics Reveals Stars Orbiting Within Light-Hours of the Milky Way’s Center. Physics Today 56(2) (Feb. 2003) 19–21. CrossRefGoogle Scholar
  187. 196.
    J. Bell: Adaptive optics clears the view for industry. Opto & Laser Europe (OLE) No. 45 (Nov. 1997) pp. 17–20. Google Scholar
  188. 197.
    H. Baumhacker et al.: Correction of strong phase and amplitude modulations by two deformable mirrors in a multistaged Ti:sapphire laser. Optics Lett. 27 (2002) 1570–1572. CrossRefGoogle Scholar
  189. 198.
    D. Burns: University of Strathclyde: intracavity adaptive-optic control of lasers. Opto & Laser Europe (OLE), No. 126 (March 2005), p. 27. Google Scholar
  190. 199.
    M. J. Booth, M. A. A. Neil, T. Wilson: New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy. J. Optical Soc. Am. (JOSA) A 19 (2002) 2112–2120. Google Scholar
  191. 200.
    H. Hemmati, Y. Chen: Active optical compensation of low-quality optical system aberrations. Optics Lett. 31 (2006) 1630–1632. CrossRefGoogle Scholar
  192. 201.
    S. Zommer et al.: Simulated annealing in ocular adaptive optics. Optics Lett. 31 (2006) 939–941. CrossRefGoogle Scholar
  193. 202.
    C. R. Vogel, Q. Yang: Modeling, simulation, and open-loop control of a continuous facesheet MEMS deformable mirror. J. Optical Soc. Am. (JOSA) A 23 (2006) 1074–1081. Google Scholar
  194. 203.
    J. Hewett, P. Bierden: Deformable mirrors reach pivotal point. Optics and Laser Europe (OLE), No. 149 (April 2007) 19–21. Google Scholar
  195. 204.
    R. C. Batra, M. Porfiri, D. Spinello: Review of modeling electrostatically actuated microelectromechanical systems. Smart Materials and Structures 16 (2007) R23–R31. CrossRefGoogle Scholar
  196. 205.
    R. Schmiedl: Mirrors to improve processing quality. Opto & Laser Europe No. 68 (Nov. 1999) 11. Google Scholar
  197. 206.
    Anon.: Unerwünschte Verformung ausgleichen. Weiter vorn, das Fraunhofer Magazin 4.14 (2014) 6. Google Scholar
  198. 207.
    A. Greenaway, J. Burnett: Industrial and Medical Applications of Adaptive Optics. Institute of Physics (IOP) Publishing, Bristol, GB, 2004. Google Scholar
  199. 208.
    J. Ballesta: Choosing adaptive optics for precision applications. Optics and Laser Europe (OLE), Issue 160 (April 2008) 31–35. Google Scholar
  200. 209.
    R. K. Tyson: Principles of Adaptive Optics. Academic Press, 3rd ed. 2011, ISBN: 978-1-4398-0859-7. Google Scholar
  201. 210.
    V. P. Lukin: Atmospheric Adaptive Optics. SPIE Press Vol. PM23 (1996), ISBN: 0-8194-1871-4. Google Scholar
  202. 211.
    J. W. Hardy: Adaptive Optics for Astronomical Telescopes. Oxford University Press 1998, ISBN: 0-19-509019-5. Google Scholar
  203. 212.
    F. Roddier (ed.): Adaptive Optics in Astronomy. Cambridge University Press 2004, ISBN: 978-0521612142. Google Scholar
  204. 213.
    D. F. Buscher, R. M. Myers, G. D. Love: Adaptive Optics. Wiley 2001, ISBN: 978-3527402984. Google Scholar
  205. 214.
    Z. Merali: Blick hinter den Vorhang. Spektrum der Wissenschaft, Aug. 2015, 36–40. Google Scholar
  206. 215.
    C. R. Fuller, C. H. Hansen, S. D. Snyder: Active Control of Sound Radiation from a Vibrating Rectangular Panel by Sound Sources and Vibration Inputs: An Experimental Comparison. J. Sound Vib. 145 (1991) 195–215. CrossRefGoogle Scholar
  207. 216.
    W. R. Johnson et al.: Active structural acoustic control using a sum of weighted spatial gradients control metric. J. Acoust. Soc. Am. 134(5), Pt. 2 (2013) 4190 (Abstract). Google Scholar
  208. 217.
    P. Aslani et al.: Active noise control for cylindrical shells using a sum of weighted spatial gradients (WSSG) control metric. J. Acoust. Soc. Am. 135(4), Pt. 2 (2014) 2387 (Abstract). Google Scholar
  209. 218.
    Y. Cao et al: An analysis of the weighted sum of spatial gradients (WSSG) control metric in active structural acoustic control. J. Acoust. Soc. Am. 135(4), Pt. 2 (2014) 2418 (Abstract). Google Scholar
  210. 219.
    J. D. Sprofera et al.: Structural acoustic control of plates with variable boundary conditions: Design methodology. J. Acoust. Soc. Am. 122 (2007) 271–279. CrossRefGoogle Scholar
  211. 220.
    J. Bös, et al.: Reduction of compressor vibrations by means of an active tuned vibration absorber. In: Fortschritte der Akustik – DAGA 2008, S. 315–316. Google Scholar
  212. 221.
    R. L. Clark, C. R. Fuller: Active Structural Acoustic Control with Adaptive Structures Including Wavenumber Considerations. In: Proc. of the 1st Conference on Recent Advances in Active Control of Sound and Vibration (1991), pp. 507–524. Google Scholar
  213. 222.
    M. R. F. Kidner, R. I. Wright: Global control of sound radiation from a plate using several adaptive vibration neutralisers with local control schemes. Acoustics 2005, Australian Acoustical Society Annual Conference, Busselton, AU, Proc.: pp. 55–60. Google Scholar
  214. 223.
    K. Chen et al.: Secondary actuation and error sensing for active acoustic structure. J. Sound Vib. 309 (2008) 40–51. CrossRefGoogle Scholar
  215. 224.
    P. J. Remington et al.: Reduction of turbulent boundary layer induced interior noise through active impedance control. J. Acoust. Soc. Am. 123 (2008) 1427–1438. CrossRefGoogle Scholar
  216. 225.
    C. Hong, S. J. Elliott: Local feedback control of light honeycomb panels. J. Acoust. Soc. Am. 121 (2007) 222–233. CrossRefGoogle Scholar
  217. 226.
    G. Honsel: Quietschfrei anhalten. Technology Review – Das M.I.T. Magazin für Innovation, Deutsche Ausgabe, No. 6 (Juni 2007) 10. Google Scholar
  218. 227.
    A. Jakob, M. Möser: Parameter Study with a Modal Model for Actively Controlled Double-Glazed Windows. Acta Acustica/Acustica 90 (2004) 467–480. Google Scholar
  219. 228.
    J. P. Carneal, C. R. Fuller: An analytical and experimental investigation of active structural acoustic control of noise transmission through double panel systems. J. Sound Vib. 272 (2004) 749–771. CrossRefGoogle Scholar
  220. 229.
    S. Akishita, A. Mitani, H. Takanashi: Active Modular Panel System for Insulating Floor Impulse Noise. 18th International Congress on Acoustics (ICA 2004), Kyoto, JP, April 4–9, 2004. Proc.: Paper We4.D.5, pp. III-2165 – III-2168. Google Scholar
  221. 230.
    J. Lane, J. Pearse, S. Gutschmidt: Novel application of PVDF film in active noise control through windows. J. Acoust. Soc. Am. 131(4), Pt. 2 (2012) 3436 (Abstract). Google Scholar
  222. 231.
    X. Yu et al.: Active Control of Sound Transmission Through Windows With Carbon Nanotube-Based Transparent Actuators. IEEE Trans. Control Syst. Technol. 15 (2007) 704–714. CrossRefGoogle Scholar
  223. 232.
    O. Heuss et al.: Application of active and semi-passive control strategies at a double glazing window. AIA-DAGA 2013, Programmheft: S. 385. Google Scholar
  224. 233.
    A. Ganguli, A. Deraemaeker, A. Preumont: Regenerative chatter reduction by active damping control. J. Sound Vib. 300 (2007) 847–862. CrossRefGoogle Scholar
  225. 234.
    H. Puebla, J. Alvarez-Ramirez: Suppression of stick-slip in drillstrings: A control approach based on modeling error compensation. J. Sound Vib. 310 (2008) 881–901. CrossRefGoogle Scholar
  226. 235.
    J. C. Ji, C. H. Hansen: Hopf Bifurcation of a Magnetic Bearing System with Time Delay. ASME J. Vib. Acoust. 127 (2005) 362–369. CrossRefGoogle Scholar
  227. 236.
    Y.-Y. He et al.: Vibration control of a rotor-bearing system using shape memory alloy: I. Theory. Smart Materials and Structures 16 (2007) 114–121. CrossRefGoogle Scholar
  228. 237.
    Y.-Y. He et al.: Vibration control of a rotor-bearing system using shape memory alloy: II. Experimental study. Smart Materials and Structures 16 (2007) 122–127. CrossRefGoogle Scholar
  229. 238.
    I. S. Cade, P. S. Keogh, M. N. Sahinkaya: Rotor/active magnetic bearing transient control using wavelet predictive moderation. J. Sound Vib. 302 (2007) 88–103. CrossRefGoogle Scholar
  230. 239.
    X.-H. Liang et al.: Model Predictive Controller Design to Suppress Rate-Limiter-Based Pilot-Induced Oscillations. Trans. Japan Soc. Aeron. Space Sci. 49(166) (2007) 239–245. CrossRefGoogle Scholar
  231. 240.
    T. Kapitaniak: Chaos for Engineers. Springer-Verlag, 2nd ed. 2000, ISBN: 3-540-66574-9. Google Scholar
  232. 241.
    H. G. Schuster (Ed.): Handbook of Chaos Control. Wiley 1999, ISBN: 3-527-29436-8. Google Scholar
  233. 242.
    E. Schöll, H. G. Schuster (Eds.): Handbook of Chaos Control. Wiley, 2nd edition 2008, ISBN: 978-3-527-40605-0. Google Scholar
  234. 243.
    A. Hübler, E. Lüscher: Resonant stimulation and control of nonlinear oscillators. Die Naturwissenschaften 76 (1989) 67–69. CrossRefGoogle Scholar
  235. 244.
    E. Ott, C. Grebogi, Y. A. Yorke: Controlling chaos. Phys. Rev. Lett. 64 (1990) 1196–1199. MathSciNetMATHCrossRefGoogle Scholar
  236. 245.
    K. Pyragas: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170 (1992) 421–428. CrossRefGoogle Scholar
  237. 246.
    H.-T. Yau, C.-K. Chen, C.-L. Chen: Sliding mode control of chaotic systems with uncertainties. Int. J. Bifurcation and Chaos 10 (2000) 1139–1147. Google Scholar
  238. 247.
    G. Song, H. Gu: Active Vibration Suppression of a Smart Flexible Beam Using a Sliding Mode Based Controller. J. Vibration and Control 13 (2007) 1095–1107. MATHCrossRefGoogle Scholar
  239. 248.
    K.-G. Sung et al.: Discrete-time fuzzy sliding mode control for a vehicle suspension system featuring an electrorheological fluid damper. Smart Materials and Structures 16 (2007) 798–808. CrossRefGoogle Scholar
  240. 249.
    H. Lee, V. I. Utkin: Chattering suppression methods in sliding mode control systems. Annual Reviews in Control 31 (2007) 179–188. CrossRefGoogle Scholar
  241. 250.
    H. Gu, G. Song, H. Malki: Chattering-free fuzzy adaptive robust sliding-mode vibration control of a smart flexible beam. Smart Materials and Structures 17(3) (2008), Paper No. 035007. Google Scholar
  242. 251.
    K.-C. Lu et al.: Decentralized sliding mode control of a building using MR dampers. Smart Materials and Structures 17(5) (2008), Paper No. 055006. Google Scholar
  243. 252.
    X. Wu, J. Cai, M. Wang: Robust synchronization of chaotic horizontal platform systems with phase difference. J. Sound Vib. 305 (2007) 481–491. MathSciNetMATHCrossRefGoogle Scholar
  244. 253.
    F. Schürer: Zur Theorie des Balancierens. Math. Nachr. 1 (1948) 295–331. MathSciNetMATHCrossRefGoogle Scholar
  245. 254.
    W. L. Ditto et al.: Control of human atrial fibrillation. Int. J. Bifurcation and Chaos 10 (2000) 593–601. Google Scholar
  246. 255.
    M. Ogorzałek: Electronic Chaos Controllers – From Theory to Applications. In: E. Schöll and H. G. Schuster (Eds.): Handbook of Chaos Control, 2nd ed., 2008, Chapter 34, pp. 751–770. Google Scholar
  247. 256.
    L. Kocarev, U. Parlitz: General approach for chaotic synchronization with application to communication. Phys. Rev. Lett. 74 (1995) 5028–5031. CrossRefGoogle Scholar
  248. 257.
    T. L. Carroll: Noise Robust Chaotic Systems. In: E. Schöll and H. G. Schuster (Eds.): Handbook of Chaos Control, 2nd ed., 2008, Chapter 15, pp. 325–347. Google Scholar
  249. 258.
    T. Erneux, T. Kalmár-Nagy: Nonlinear Stability of a Delayed Feedback Controlled Container Crane. J. Vibration and Control 13 (2007) 603–616. MATHCrossRefGoogle Scholar
  250. 259.
    A. Ahlborn, U. Parlitz: Multiple Delay Feedback Control. In: E. Schöll und H. G. Schuster (Eds.): Handbook of Chaos Control, 2nd ed., 2008, Chapter 11, pp. 197–220. Google Scholar
  251. 260.
    S. Chatterjee: Vibration control by recursive time-delayed acceleration feedback. J. Sound Vib. 317 (2008) 67–90. CrossRefGoogle Scholar
  252. 261.
    G. Chen, J. L. Moiola, H. O. Wang: Bifurcation control: Theories, methods, and applications. Int. J. Bifurcation and Chaos (IJBC) 10 (2000) 511–548. MathSciNetMATHGoogle Scholar
  253. 262.
    S. Lee: Noise Killing System of Fans. U.S. Patent US 5,791,869. Erteilung: 11. 8. 1998. Priorität (KR): 18. 9. 1995. Google Scholar
  254. 263.
    X. F. Wang, G. Chen: Chaotification via arbitrarily small feedback controls: Theory, method, and applications. Int. J. Bifurcation and Chaos 10 (2000) 549–570. MathSciNetMATHGoogle Scholar
  255. 264.
    S.-Y. Liu, X. Yu, S.-J. Zhu: Study on the chaos anti-control technology in nonlinear vibration isolation system. J. Sound Vib. 310 (2008) 855–864. CrossRefGoogle Scholar
  256. 265.
    P. J. Dines: Active control of flame noise. Ph. D. Thesis, Cambridge, England (1984). Google Scholar
  257. 266.
    A. S. Morgans, A. P. Dowling: Model-based control of combustion instabilities. J. Sound Vib. 299 (2007) 261–282. CrossRefGoogle Scholar
  258. 267.
    M. A. Kegerise, R. H. Cabell, L. N. Cattafesta III: Real-time feedback control of flow-induced cavity tones – Part 1: Fixed-gain control. J. Sound Vib. 307 (2007) 906–923. CrossRefGoogle Scholar
  259. 268.
    M. A. Kegerise, R. H. Cabell, L. N. Cattafesta III: Real-time feedback control of flow-induced cavity tones – Part 2: Adaptive control. J. Sound Vib. 307 (2007) 924–940. CrossRefGoogle Scholar
  260. 269.
    H. W. Liepmann, D. M. Nosenchuk: Active control of laminar–turbulent transition. J. Fluid Dynamics 118 (1982) 201–204. Google Scholar
  261. 270.
    D. Egelhof: Einrichtung zur Schwingungsdämpfung. Deutsche Patentanmeldung DE 35 41 201 A1. Anmeldung: 21. 11. 1985. Veröffentlichung: 27. 5. 1987. Google Scholar
  262. 271.
    R. A. Mangiarotty: Control of Laminar Flow in Fluids by Means of Acoustic Energy. U.S. Patent US 4,802,642. Anmeldung: 14. 10. 1986. Erteilung: 7. 2. 1989. Google Scholar
  263. 272.
    F. Evert, D. Ronneberger, F.-R. Grosche: Application of linear and nonlinear adaptive filters for the compensation of disturbances in the laminar boundary layer. Z. angew. Math. und Mech. (ZAMM) 80 (2000) Suppl. 2, pp. 85–88. Google Scholar
  264. 273.
    R. Mani, D. C. Lagoudas, O. K. Rediniotis: Active skin for turbulent drag reduction. Smart Materials and Structures 17(3) (2008) Paper No. 035004. Google Scholar
  265. 274.
    M. F. L. Harper: Active Control of Surge in a Gas Turbine Engine. In: Proc. of the 1st Conference on Recent Advances in Active Control of Sound and Vibration. Blacksburg, VA, USA, April 1991, pp. 133–149. Google Scholar
  266. 275.
    J. E. FfowcsWilliams: The Aerodynamic Potential of Anti-Sound. ICAS 15th Congress, London, Sept. 7–12, 1986. Proc.: Paper 86-01 (14 pp.). Auch: J. de Mécanique Théorique et Appliquée 6 (1987) 1–21. Google Scholar
  267. 276.
    J.E. FfowcsWilliams, W. Möhring: Active Control of Kelvin-Helmholtz Waves. In: IUTAM Symposium on Mechanics of Passive and Active Flow Control 1999. Kluwer Academic Publishers, pp. 343–348. Google Scholar
  268. 277.
    W. R. Babcock, A. G. Cattaneo: Method and Apparatus for Generating an Acoustic Output from an Ionized Gas Stream. U.S. Patent US 3,565,209. Anmeldung: 28. 2. 1968. Erteilung: 23. 2. 1971. Google Scholar
  269. 278.
    Chih-Ming Ho et al.: Active Flow Control by Micro Systems. In: IUTAM Symposium on Mechanics of Passive and Active Flow Control 1999. Kluwer Academic Publishers, pp. 195–202. Google Scholar
  270. 279.
    A. V. Boiko, V. V. Kozlov: Strategy of the Flow MEMS Control at Laminar-Turbulent Transition in a Boundary Layer. In: IUTAM Symposium on Mechanics of Passive and Active Flow Control 1999, Kluwer Academic Publishers, Proc.: pp. 203–208. Google Scholar
  271. 280.
    B. D. Charles et al.: Blade Vortex Interaction Noise Reduction Techniques for a Rotorcraft. U.S. Patent US 5,588,800. Anmeldung: 31. 5. 1994. Erteilung: 31. 12. 1996. Google Scholar
  272. 281.
    J.-S. Kim, K. W. Wang, E. C. Smith: Development of a resonant trailing-edge flap actuation system for helicopter rotor vibration control. Smart Materials and Structures 16 (2007) 2275–2285. CrossRefGoogle Scholar
  273. 282.
    P. Gerontakos, T. Lee: Dynamic Stall Flow Control via a Trailing-Edge Flap. AIAA J. 44 (2006) 469–480. CrossRefGoogle Scholar
  274. 283.
    M. L. Post, T. C. Corle: Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil. AIAA J. 44 (2006) 3125–3135. CrossRefGoogle Scholar
  275. 284.
    H. T. Ngo: Tip Vortex Reduction System. U.S. Patent US 5,791,875. Anmeldung: 10. 9. 1996. Erteilung: 11. 8. 1998. Google Scholar
  276. 285.
    B.-H. Kim et al.: Modeling Pulsed-Blowing Systems for Flow Control. AIAA J. 43 (2005) 314–325. CrossRefGoogle Scholar
  277. 286.
    L. Enghardt: Mit Druckluft wirds leiser. Fluglärmminderung mit Antischall. DLR Magazin 146 (Juni 2015) 26–29. Google Scholar
  278. 287.
    F. Bake, I. Röhle, L. Enghardt: Laut – leise – leiser. DLR-Triebwerksakustiker erforschen Brennkammergeräusche. DLR Nachrichten 119 (2008) 16–21. Google Scholar
  279. 288.
    R. H. Cabell et al.: Feedback Control of a Morphing Chevron for Takeoff and Cruise Noise Reduction. ACTIVE 04. The 2004 International Symposium on Active Control of Sound and Vibration, Williamsburg, VA, USA. Proc. on CD ROM: Paper a04_097.pdf. Google Scholar
  280. 289.
    H. Preckel, D. Ronneberger: Dynamic Control of the Jet-Edge-Flow. In: Proc. of the IUTAM Symp. on Mechanics of Passive and Active Flow Control 1999. Kluwer Acad. Publ., pp. 349–354. Google Scholar
  281. 290.
    G. Wickern: Windkanal. Deutsche Patentanmeldung DE 197 02 390 A1. Anmeldung: 24.1.1997. Veröffentlichung: 30.7.1998. Google Scholar
  282. 291.
    B. Lange, D. Ronneberger: Control of Pipe Flow by Use of an Aeroacoustic Instability. In: IUTAM Symposium on Mechanics of Passive and Active Flow Control 1999. Kluwer Acad. Publ., pp. 305–310. Google Scholar
  283. 292.
    B. Lange, D. Ronneberger: Active Noise Control by Use of an Aeroacoustic Instability. Acta Acustica/Acustica 89 (2003) 658–665. Google Scholar
  284. 293.
    B. Arnold, T. Lutz, E. Krämer: Aeroacoustic Simulation of Wind Turbines and Active Noise Reduction by Means of Boundary Layer Suction. DAGA 2014, Programmheft: S. 147. Google Scholar
  285. 294.
    P. Lueg: Verfahren zur Dämpfung von Schallschwingungen. DRP Nr. 655 508. Anmeldung: 27. 1. 1933. Erteilung: 30. 12. 1937. Google Scholar
  286. 295.
    P. Lueg: Process of Silencing Sound Oscillations. U.S. Patent US 2,043,416. Anmeldung: 8. 3. 1934. Erteilung: 9. 6. 1936. Google Scholar
  287. 296.
    B. Widrow, S. D. Stearns: Adaptive Signal Processing. Prentice-Hall 1985, ISBN: 978-0-13-0040299. Google Scholar
  288. 297.
    Y. Iwamatsu, K. Fujii, M. Muneyasu: Frequency domain method to estimate the coefficients of feedback control filter for active noise control systems. Acoust. Sci. Technol 27 (2006) 264–269. CrossRefGoogle Scholar
  289. 298.
    K. Fujii et al.: Verification of simultaneous equations method by an experimental active noise control system. Acoust. Sci. Technol. 27 (2006) 270–277. CrossRefGoogle Scholar
  290. 299.
    D. Guicking, K. Karcher: Active Impedance Control for One-Dimensional Sound. ASME J. Vib. Acoust. Stress Rel. in Design 106 (1984) 393–396. CrossRefGoogle Scholar
  291. 300.
    L. J. Eriksson: Active Attenuation System with On-line Modeling of Speaker, Error Path and Feedback Path. U.S. Patent US 4,677,676. Anmeldung: 11. 2. 1986. Erteilung: 30. 6. 1987. Google Scholar
  292. 301.
    Paul L. Feintuch: An Adaptive Recursive LMS Filter. Proc. IEEE 64 (1976) 1622–1624. Comments: 65 (1977) 1399 und 1402. Google Scholar
  293. 302.
    W. von Heesen: Practical Experience with an Active Noise Control Installation in the Exhaust Gas Line of a Co-Generator Plant Engine. ACUSTICA – acta acustica 82 (1996) Suppl. 1, p. S195. Google Scholar
  294. 303.
    S. Deus: Aktive Schalldämpfung im Ansaugkanal von Gebläsen. In: Fortschritte der Akustik – DAGA 98 (1998), S. 686–687. Google Scholar
  295. 304.
    J. Hansen: Eine anwendungsreife Lösung für die aktive Minderung von Abgasgeräuschen industrieller Dieselmotoren und Drehkolbenpumpen. VDI Bericht Nr. 1491 (1999). Google Scholar
  296. 305.
    K. Bay, M. Krämer, P. Brandstätt: Aktiver Kompaktschalldämpfer für Heizungssysteme. Fraunhofer Institut für Bauphysik, IBP-Mitteilung, Jg. 31 (2004), No. 447 (2 S.). Google Scholar
  297. 306.
    P. Brandstätt, K. Bay, G. Fischer: Lärmminderung in Abgasleitungen von Heizungssystemen. Fraunhofer Institut für Bauphysik, IBP-Mitteilung, Jg. 31 (2004), No. 450 (2 S.). Google Scholar
  298. 307.
    C. H. Hansen et al.: Practical implementation of an active noise control system in a hot exhaust stack. Acoustics 1996 – Australian Acoustical Society Annual Conference, Brisbane, AU. Google Scholar
  299. 308.
    L. J. Eriksson, M. C. Allie, R. H. Hoops: Active Acoustic Attenuation System for Higher Order Mode Non-Uniform Sound Field in a Duct. U.S. Patent US 4,815,139. Anmeldung: 16. 3. 1988. Erteilung: 21. 3. 1989. Google Scholar
  300. 309.
    M. A. Swinbanks: The active control of sound propagation in long ducts. J. Sound Vib. 27 (1973) 411–436. MATHCrossRefGoogle Scholar
  301. 310.
    J. Winkler, S. J. Elliott: Aktive Kompensation von breitbandigem Schall in Kanälen mittels zweier Lautsprecher. In: Fortschritte der Akustik – DAGA ’94, DPG-GmbH 1994, 529–532. Auch: Adaptive Control of Broadband Sound in Ducts Using a Pair of Loudspeakers. Acustica 81 (1995) 475–488. Google Scholar
  302. 311.
    D. Guicking, H. Freienstein: Broadband Active Sound Absorption in Ducts with Thinned Loudspeaker Arrays. In: ACTIVE 95 (1995), Newport Beach, CA, USA. Proc.: pp. 371–382. Auch: H. Freienstein, D. Guicking: Experimentelle Untersuchung von linearen Lautsprecheranordnungen als aktive Absorber in einem Kanal. In: Fortschritte der Akustik – DAGA 96 (1996), S. 112–113. Google Scholar
  303. 312.
    B. Widrow et al.: Adaptive Noise Cancelling: Principles and Applications. Proc. IEEE 63 (1975) 1692–1716. CrossRefGoogle Scholar
  304. 313.
    J. M. McCool et al.: Adaptive detector. U.S. Patent US 4,243,935. Anmeldung: 18. 5. 1979. Erteilung: 6. 1. 1981. Google Scholar
  305. 314.
    M. H. Silverberg, R. D. Benning, N. B. Thompson: Outbound Noise Cancellation for Telephonic Handset. U.S. Patent US 5,406,622. Anmeldung: Sept. 2, 1993. Erteilung: April 11, 1995. Google Scholar
  306. 315.
    B. Widrow: Seismic Exploration Method and Apparatus for Cancelling Interference from Seismic Vibration Source. U.S. Patent US 4,556,962. Anmeldung: 21. 4. 1983. Erteilung: 3. 12. 1985. Google Scholar
  307. 316.
    B. Widrow: ECG Enhancement by Adaptive Cancellation of Electrosurgical Interference. U.S. Patent US 4,537,200. Anmeldung: 7. 7. 1983. Erteilung: 27. 8. 1985. Google Scholar
  308. 317.
    T. R. Harley: Active Noise Control Stethoscope. U.S. Patent US 5,610,987. Erstanmeldung: 16. 8. 1993. Erteilung: 11. 3. 1997. Google Scholar
  309. 318.
    H. Ding, X. Qiu, B. Xu: An adaptive speech enhancement method for siren noise cancellation. Applied Acoustics 65 (2004) 385–399. CrossRefGoogle Scholar
  310. 319.
    J. Vanden Berghe, J. Wouters: An adaptive noise canceller for hearing aids using two nearby microphones. J. Acoust. Soc. Am. 103 (1998) 3621–3626. Google Scholar
  311. 320.
    H. Falcke: Lofar und die Epoche der Reionisation. Spektrum der Wissenschaft, Jan. 2007, S. 51. Google Scholar
  312. 321.
    G. P. Eatwell, S. L. Machacek, M. J. Parrella: Piezo Speaker for Improved Passenger Cabin Audio Systems. International Patent Application WO 97/17818 A1. Veröffentlichung: 15. 5. 1997. Priorität (US): 25. 9. 1995. Google Scholar
  313. 322.
    H.-J. Raida, O. Bschorr: Gerichteter Stabstrahler. Deutsches Patent DE 196 48 986 C1. Anmeldung: 26. 11. 1996. Erteilung: 9. 4. 1998. Google Scholar
  314. 323.
    M. A. Daniels: Loudspeaker Phase Distortion Control Using Velocity Feedback. U.S. Patent US 5,771,300. Anmeldung: 25. 9. 1996. Erteilung: 23. 6. 1998. Google Scholar
  315. 324.
    C. Carme, A. Montassier, J. L. Regnier: Haut-parleur linéaire. Französische Patentanmeldung FR 2 766 650 A1. Anmeldung: 23. 7. 1997. Veröffentlichung: 29. 1. 1999. Google Scholar
  316. 325.
    D. Min, D. Kim, J. Park: Active control of exhaust noise using an air horn. J. Acoust. Soc. Am. 131(4), Pt. 2 (2012) 3436 (Abstract). Google Scholar
  317. 326.
    G. V. Moustakides: Correcting the Instability Due to Finite Precision of the Fast Kalman Identification Algorithms. Signal Processing 18 (1989) 33–42. CrossRefGoogle Scholar
  318. 327.
    R. Schirmacher, D. Guicking: Theory and implementation of a broadband active noise control system using a fast RLS algorithm. Acta Acustica 2 (1994) 291–300. Google Scholar
  319. 328.
    S. R. Popovich: Fast Adapting Control System and Method. U.S. Patent US 5,602,929. Anmeldung: 30. 1. 1995. Erteilung: 11. 2. 1997. Google Scholar
  320. 329.
    R. W. Jones, B. L. Olsen, B. R. Mace: Comparison of convergence characteristics of adaptive IIR and FIR filters for active noise control in a duct. Applied Acoustics 68 (2007) 729–738. CrossRefGoogle Scholar
  321. 330.
    R. Schirmacher: Schnelle Algorithmen für adaptive IIR-Filter und ihre Anwendung in der aktiven Schallfeldbeeinflussung. Dissertation Göttingen 1995. Abstract: ACUSTICA – acta acustica 82 (1996) 384. Google Scholar
  322. 331.
    J. Yuan: Adaptive Laguerre filters for active noise control. Applied Acoustics 68 (2007) 86–96. CrossRefGoogle Scholar
  323. 332.
    J. K. Thomas et al.: Eigenvalue equalization filtered-x algorithm for the multichannel active noise control of stationary and nonstationary signals. J. Acoust. Soc. Am. 123 (2008) 4238–4249. CrossRefGoogle Scholar
  324. 333.
    W. S. Levine: The Control Handbook. CRC Press 1995, ISBN: 0-8493-8570-9. Google Scholar
  325. 334.
    S. O. R. Moheimani, D. Halim, A. J. Fleming: Spatial Control of Vibration: Theory and Experiments. World Scientific 2003, ISBN: 978-9812383372. Google Scholar
  326. 335.
    L. Schreiber (1971): Schallschutz durch „Antilärmquellen“? Wirkliche Lärmminderung nur durch Vernichtung der Schallenergie. VDI-Nachrichten Nr. 15 (14. 4. 1971), S. 13. Google Scholar
  327. 336.
    M. J. M. Jessel: La question des absorbeurs actifs. Revue d’Acoustique 5(18) (1972) 37–42. Google Scholar
  328. 337.
    G. A. Mangiante: Active Sound Absorption. J. Acoust. Soc. Am. 61 (1977) 1516–1523. CrossRefGoogle Scholar
  329. 338.
    N. Epain, E. Friot: Active control of sound inside a sphere via control of the acoustic pressure at the boundary surface. J. Sound Vib. 299 (2007) 587–604. CrossRefGoogle Scholar
  330. 339.
    G. A. Mangiante, J. P. Vian: Application du principe de Huygens aux absorbeurs acoustiques actifs. II: Approximations du principe de Huygens. Acustica 37 (1977) 175–182. Google Scholar
  331. 340.
    J. Piraux, S. Mazzanti: Broadband active noise attenuation in three-dimensional space. Internoise 85, München 1985, Proc.: pp. 485–488. Google Scholar
  332. 341.
    P. M. Morse, K. U. Ingard: Theoretical Acoustics. McGraw-Hill 1968, ISBN: 0-12-515425-0. Reprint: Princeton University Press 1986, ISBN: 0-691-08425-4. Google Scholar
  333. 342.
    S. D. Sommerfeldt, K. L. Gee: Lessons learnt for implementing near-field active control systems to achieve global control of fan noise. J. Acoust. Soc. Am. 131(4), Pt. 2 (2012) 3379 (Abstract). Google Scholar
  334. 343.
    S. Sommerfeldt, K. L. Gee: Active control of axial and centrifugal fan noise. J. Acoust. Soc. Am. 133(5), Pt. 2 (2013) 3264 (Abstract). Google Scholar
  335. 344.
    M. A. Swinbanks: The active control of noise and vibration and some applications in industry. Proc. IMechE 198A(13) (1984) 281–288. CrossRefGoogle Scholar
  336. 345.
    L.-A. Boudreault, A. L’Espérance, A. Boudreau: Upgrade of a multi-channel active noise control system for an industrial stack. J. Acoust. Soc. Am. 133(5), Pt. 2 (2013) 3266 (Abstract). Google Scholar
  337. 346.
    G. B. B. Chaplin: Anti-sound — The Essex breakthrough. Chartered Mechanical Engineer (CME) 30 (Jan. 1983) pp. 41–47. Google Scholar
  338. 347.
    F. Lehringer, G. Zintel: Aktive Pegelminderung bei Abgasanlagen von Kraftfahrzeugen. Haus der Technik, Essen, Informationsmappe zur Tagung „Aktive Lärmbekämpfung und Schwingungsabwehr“ am 21.2.1995, No. 14. Google Scholar
  339. 348.
    D. Bönnen et al.: Development Methodology for Active Exhaust Systems. AIA–DAGA 2013, Programmheft: S. 279–280. Google Scholar
  340. 349.
    J. Krüger, M. Pommerer, M. Conrath: Leichtbau im Automobil mit aktiven Abgas-Schalldämpfern. DAGA 2012, Programmheft: S. 46. Google Scholar
  341. 350.
    J. Krüger, M. Conrath, M. Pommerer: Progress on Active Exhaust Silencers for Gasoline Engines. AIA–DAGA 2013, Programmheft: S. 280. Google Scholar
  342. 351.
    M. Pommerer, V. Koch, J. Krüger: Active Sound Design for Diesel Exhaust Systems. AIA–DAGA 2013, Programmheft: S. 280–281. Google Scholar
  343. 352.
    K. Simanowski et al.: Active Noise Cancellation in the Exhaust Gas System of a Ship’s Engine. AIA–DAGA 2013, Programmheft: S. 339. Google Scholar
  344. 353.
    A. V. Bychowskij: Sposob polawlenija schuma w sluchowom organe [Verfahren zur Lärmminderung im Ohr]. Patent der UdSSR, SU 133 631. Anmeldung: 24. 8. 1949. Veröffentlichung: Erf.-Bulletin Nr. 22, 1960. Google Scholar
  345. 354.
    R. L. McKinley: Development of Active Noise Reduction Earcups for Military Applications. ASME Winter Annual Meeting, Anaheim, CA, 1986, Session NCA-8B. Google Scholar
  346. 355.
    I. Veit: Gehörschutz-Kopfhörer. Elektronik kontra Lärm. Funkschau 60(23) (1988) 50–52. Google Scholar
  347. 356.
    L. R. Ray et al.: Hybrid feedforward–feedback active noise reduction for hearing protection and communication. J. Acoust. Soc. Am. 120 (2006) 2026–2036. CrossRefGoogle Scholar
  348. 357.
    A. J. Brammer et al.: Improving speech intelligibility in active hearing protectors and communication headsets with subband processing. J. Acoust. Soc. Am. 133(5), Pt. 2 (2013) 3272 (Abstract). Google Scholar
  349. 358.
    D. Dalga, S. Doclo: ANC-Motivated Noise Reduction Algorithms for Open-Fitting Hearing Aids. DAGA 2014, Programmheft: S. 48–49. Google Scholar
  350. 359.
    S. Priese et al.: Aktive Schallreduktion mit Ohrkanalhörern. DAGA 2012, Programmheft: S. 265–266. Google Scholar
  351. 360.
    S. Höber, C. Pape, E. Reithmeier: Echtzeit-Detektion von instabilem Regelkreisverhalten. DAGA 2015, Programmheft: S. 331–332. Google Scholar
  352. 361.
    C. Bruhnken et al.: Adaptive Feedback Control for Active Noise Cancellation with In-Ear Headphones. AIA–DAGA 2013, Programmheft: S. 337–338. Google Scholar
  353. 362.
    M. Behn et al.: Psychoacoustical Evaluation of Active Noise Control in Headphones. AIA–DAGA 2013, Programmheft: S. 338. Google Scholar
  354. 363.
    S. Priese et al.: The Need for Psychoacoustics in Active Noise Cancellation. AIA–DAGA 2013, Programmheft: S. 338. Google Scholar
  355. 364.
    J. Peissig: The Optical Microphone. Acoustics Today 2(2) (April 2006) 39–42. Google Scholar
  356. 365.
    N. Miyazaki, Y. Kajikawa: Head-mounted active noise control system and its application to reducing MRI noise. J. Acoust. Soc. Am. 131(4), Pt. 2 (2012) 3380 (Abstract). Google Scholar
  357. 366.
    S. Nakayama et al.: Sound source measurement of magnetic resonance imaging driving sound for feedforward active noise control system. J. Acoust. Soc. Am. 133(5), Pt. 2 (2013) 3302 (Abstract). Google Scholar
  358. 367.
    M. R. Schroeder, D. Gottlob, K. F. Siebrasse: Comparative Study of European Concert Halls. Correlation of Subjective Preference with Geometric and Acoustic Parameters. J. Acoust. Soc. Am. 56 (1974) 1195–1201. CrossRefGoogle Scholar
  359. 368.
    M. A. Akeroyd et al.: The binaural performance of a cross-talk cancellation system with matched or mismatched setup and playback acoustics. J. Acoust. Soc. Am. 121 (2007) 1056–1069. CrossRefGoogle Scholar
  360. 369.
    E. Hänsler: The hands-free telephone problem – An annotated bibliography. Signal Processing 27 (1992) 259–271. CrossRefGoogle Scholar
  361. 370.
    S. M. Kuo, Y. C. Huang, Z. Pan: Acoustic Noise and Echo Cancellation Microphone System for Videoconferencing. IEEE Trans. Consumer Electronics 41 (1995) 1150–1158. CrossRefGoogle Scholar
  362. 371.
    A. Ortega, E. Lleida, E. Masgrau: Speech Reinforcement System for Car Cabin Communications. IEEE Trans. Speech and Audio Processing 13 (2005) 917–929. CrossRefGoogle Scholar
  363. 372.
    T. Gänsler, J. Benesty: New Insights to the Stereophonic Acoustic Echo Cancellation Problem and an Adaptive Nonlinearity Solution. IEEE Trans. Speech and Audio Processing 10 (2002) 257–267. CrossRefGoogle Scholar
  364. 373.
    A. W. H. Khong, P. A. Naylor: Stereophonic Acoustic Echo Cancellation Employing Selective-Tap Adaptive Algorithms. IEEE Trans. Audio, Speech, and Language Processing 14 (2006) 785–796. CrossRefGoogle Scholar
  365. 374.
    S. Gustafsson et al.: A Psychoacoustic Approach to Combined Acoustic Echo Cancellation and Noise Reduction. IEEE Trans. Speech and Audio Processing 10 (2002) 245–256. CrossRefGoogle Scholar
  366. 375.
    O. Hoshuyama, R. A. Goubran: A new adaptation algorithm for echo cancellation in fast changing enviroments. 18th International Congress on Acoustics (ICA 2004), Kyoto, JP. Proc.: Paper Th.P1.13, pp. IV-3147 – IV-3150. Google Scholar
  367. 376.
    S. Emura et al.: New stereo echo canceller operating on single digital signal processor. Acoust. Sci. Technol. 28 (2007) 172–180. CrossRefGoogle Scholar
  368. 377.
    M. M. Sondhi: Closed Loop Vibration Echo Canceller Using Generalized Filter Networks. U.S. Patent US 3,499,999. Anmeldung: 31. 10. 1966. Erteilung: 10. 3. 1970. Google Scholar
  369. 378.
    E. Herter, W. Lörcher: Nachrichtentechnik. Hanser, 5. Aufl. 1990, Abschnitt 7.5.6, ISBN: 3-446-15964-9. 9. Aufl. 2004. Google Scholar
  370. 379.
    C. Gerner, D. Sachau, H. Breitbach: Optimization of Actuator and Sensor Positions for Active Noise Reduction (ANR). 12th Intnl. Congr. Sound Vib. (ICSV) (2005), Paper 348. Google Scholar
  371. 380.
    A. Cichocki, S.-I. Amari: Adaptive Blind Signal and Image Processing. Wiley 2002, ISBN: 978-0-471-60791-5. Google Scholar
  372. 381.
    H. F. Olson: Electronic Sound Absorber. U.S. Patent US 2,983,790. Anmeldung: 30. 4. 1953. Erteilung: 9. 5. 1961. Google Scholar
  373. 382.
    H. F. Olson: Electronic Control of Noise, Vibration, and Reverberation. J. Acoust. Soc. Am. 28 (1956) 966–972. CrossRefGoogle Scholar
  374. 383.
    G. P. Eatwell: The Use of the Silentseat in Aircraft Cabins. In: Proceedings of the 1st Conference on Recent Advances in Active Control of Sound and Vibration (1991), pp. 302–310. Google Scholar
  375. 384.
    J. Mejia, H. Dillon, M. Fisher: Active cancellation of occlusion: An electronic vent for hearing aids and hearing protectors. J. Acoust. Soc. Am. 124 (2008) 235–240. CrossRefGoogle Scholar
  376. 385.
    D. H. Gilbert: Echo Cancellation System. U.S. Patent US 4,875,372. Anmeldung: 3. 5. 1988. Erteilung: 24. 10. 1989. Google Scholar
  377. 386.
    C. G. Hutchens, S. A. Morris: Method for Acoustic Reverberation Removal. U.S. Patent US 4,796,237. Anmeldung: 28. 1. 1987. Erteilung: 3. 1. 1989. Google Scholar
  378. 387.
    D. Hassler: Apparatus and Method for Suppressing Reflections at an Ultrasound Transducer. U.S. Patent US 5,245,586. Erteilung: 14. 9. 1993. Priorität (EP): 15. 11.1̇991. Google Scholar
  379. 388.
    M. Wenzel: Untersuchungen zur breitbandigen Messung und Regelung der akustischen Wandimpedanz an einer aktiven Schallwand mit adaptiven Filtern. Dissertation Göttingen 1992. Google Scholar
  380. 389.
    Y. Nagatomo et al.: Variable reflection acoustic wall system by active sound radiation. Acoust. Sci. Technol. 28 (2007) 84–88. CrossRefGoogle Scholar
  381. 390.
    K. A. Hoover, S. Ellison: Electronically variable room acoustics—Motivations and challenges. J. Acoust. Soc. Am. 133(5), Pt. 2 (2013) 3306 (Abstract). Google Scholar
  382. 391.
    R. W. Schwenke: Active acoustics and sound reinforcement at TUI Operettenhaus, Hamburg: A case study. J. Acoust. Soc. Am. 133(5), Pt. 2 (2013) 3307 (Abstract). Google Scholar
  383. 392.
    S. Ellison, P. Germain: Optimizing acoustics for spoken word using active acoustics. J. Acoust. Soc. Am. 133(5), Pt. 2 (2013) 3402 (Abstract). Google Scholar
  384. 393.
    R. Sonnadara et al.: Designing an auditory lab including active acoustics. J. Acoust. Soc. Am. 135(4), Pt. 2 (2014) 2400 (Abstract). Google Scholar
  385. 394.
    R. Freiheit: Enhancements in technology for improving access to active acoustic solutions in multipurpose venues. J. Acoust. Soc. Am. 136(4), Pt. 2 (2014) 2115 (Abstract). Google Scholar
  386. 395.
    D. Guicking, K. Karcher, M. Rollwage: Active control of the acoustic reflection coefficient at low frequencies. Internoise 83, International Congress on Noise Control Engineering, Edinburgh, UK (1983), Proc.: pp. 419–422. Google Scholar
  387. 396.
    D. Guicking, K. Karcher, M. Rollwage: Coherent active methods for application in room acoustics. J. Acoust. Soc. Am. 78 (1985) 1426–1434. CrossRefGoogle Scholar
  388. 397.
    D. Guicking, J. Melcher, R. Wimmel: Active Impedance Control in Mechanical Systems. Acustica 69 (1989) 39–52. Google Scholar
  389. 398.
    S. Ise: Theory of Acoustic Impedance Control for Active Noise Control. Internoise 94, International Congress on Noise Control Engineering, Yokohama, JP, 1994, Proc.: pp. 1339–1342. Google Scholar
  390. 399.
    O. Lacour, M.-A. Galland, D. Thenail: Preliminary experiments on noise reduction in cavities using active impedance changes. J. Sound Vib. 230 (2000) 69–99. CrossRefGoogle Scholar
  391. 400.
    J. Melcher: Adaptive Impedanzregelung an strukturmechanischen Systemen. Dissertation Magdeburg, März 2001, Shaker Verlag, Aachen. Google Scholar
  392. 401.
    M.-A. Galland, B. Mazeaud, N. Sellen: Hybrid passive/active absorbers for flow ducts. Applied Acoustics 66 (2005) 691–708. CrossRefGoogle Scholar
  393. 402.
    P. Cobo, M. Cuesta: Hybrid passive-active absorption of a microperforated panel in free field conditions. J. Acoust. Soc. Am. 121(6) (2007) EL251–EL255. CrossRefGoogle Scholar
  394. 403.
    Y. M. Ram, J. E. Mottershead: Receptance Method in Active Vibration Control. AIAA J. 45 (2007) 562–567. Google Scholar
  395. 404.
    A. J. Fleming et al.: Control of Resonant Acoustic Sound Fields by Electrical Shunting of a Loudspeaker. IEEE Trans. Control Syst. Technol. 15 (2007) 689–703. CrossRefGoogle Scholar
  396. 405.
    E. Rivet, R. Boulandet, H. Lissek: Optimization of electroacoustic resonators for semi-active room equalization in the low-frequency range. J. Acoust. Soc. Am. 133(5), Pt. 2 (2013) 3348 (Abstract). Google Scholar
  397. 406.
    S. J. Elliott, P. A. Nelson: Multichannel active sound control using adaptive filtering. ICASSP ’88 (1988), Paper A3.4, Proc.: pp. 2590–2593. Google Scholar
  398. 407.
    W. Böhm: Untersuchungen zur breitbandig wirksamen aktiven Kompensation instationär angeregter Schallfelder. Dissertation Göttingen 1992. Google Scholar
  399. 408.
    M. Bronzel: Aktive Schallfeldbeeinflussung nicht-stationärer Schallfelder mit adaptiven Digitalfiltern. Dissertation Göttingen 1993. Google Scholar
  400. 409.
    R. Freymann: Von der Pegelakustik zum Sounddesign. In: Fortschritte der Akustik – DAGA ’96 (1996) S. 32–42. Google Scholar
  401. 410.
    J. Scheuren, U. Widmann, J. Winkler: Active Noise Control and Sound Quality Design in Motor Vehicles. SAE Technical Paper Series, No. 1999-01-1846 (1999). Google Scholar
  402. 411.
    A. González et al.: Sound quality of low-frequency and car engine noises after active noise control. J. Sound Vib. 265 (2003) 663–679. CrossRefGoogle Scholar
  403. 412.
    L. E. Rees, S. J. Elliott: Adaptive Algorithms for Active Sound-Profiling. IEEE Trans. Audio, Speech, and Language Processing 14 (2006) 711–719. CrossRefGoogle Scholar
  404. 413.
    J. Krüger, F. Castor, R. Jebasinski: Aktive Abgas-Schalldämpfer für PKW – Chancen und Risiken. In: Fortschritte der Akustik – DAGA 2005, S. 21–22. Google Scholar
  405. 414.
    J. Krüger: Aktive Gestaltung des Abgasgeräusches – Stand und Perspektiven. In: Fahrzeugaußengeräusche. Konferenz-Unterlagen, Haus der Technik e.V., Essen, 30.–31. Jan. 2007, No. 13. Google Scholar
  406. 415.
    R. Schirmacher, S. Kerber: Integration aktiver Fahrzeugakustik-Technologien in In-Vehicle Infotainment Systeme. DAGA 2015, Programmheft: S. 299. Google Scholar
  407. 416.
    S. Kerber, R. Schirmacher: Zukünftige Strategien zur Abstimmung von Systemen für die aktive Geräuschbeeinflussung in Serienfahrzeugen. DAGA 2015, Programmheft: S. 295. Google Scholar
  408. 417.
    M. Bodden, T. Belschner: Umfassende aktive Geräuschgestaltung für Fahrzeuge. DAGA 2014, Programmheft: S. 115. Google Scholar
  409. 418.
    E. Rustighi, S. J. Elliott: Stochastic road excitation and control feasibility in a 2D linear tyre model. J. Sound Vib. 300 (2007) 490–501. CrossRefGoogle Scholar
  410. 419.
    I. Veit: Anordnung und Verfahren zur aktiven Reduzierung von Reifenschwingungen. Deutsches Patent DE 197 23 516 C1. Anmeldung: 5. 6. 1997. Erteilung: 29. 10. 1998. Google Scholar
  411. 420.
    J. Cheer, S. J. Elliott: Multichannel feedback control of interior road noise. J. Acoust. Soc. Am. 133(5), Pt. 2 (2013) 3588 (Abstract). Google Scholar
  412. 421.
    K. Schaaf et al.: Aktive Geräuschkompensation im Fahrzeuginnenraum mit Hilfe virtueller Mikrofonpositionierung. Fortschritte der Akustik – DAGA ’92 (1992) 917–920. Google Scholar
  413. 422.
    C. D. Petersen et al.: A moving zone of quiet for narrowband noise in a one-dimensional duct using virtual sensing. J. Acoust. Soc. Am. 121 (2007) 1459–1470. CrossRefGoogle Scholar
  414. 423.
    D. J. Moreau et al.: Active Noise Control with a Virtual Acoustic Sensor in a Pure-Tone Diffuse Sound Field. ICSV14, 14th International Congress on Sound and Vibration, Cairns, AU, 2007, Proceedings (8 pp.). Google Scholar
  415. 424.
    D. J. Moreau et al.: Active noise control at a moving location in a modally dense three-dimensional sound field using virtual sensing. J. Acoust. Soc. Am. 123 (2008) 3063 (Abstract). Google Scholar
  416. 425.
    C. R. Fuller: Analytical model for investigation of interior noise characteristics in aircraft with multiple propellers including synchrophasing. J. Sound Vib. 109 (1986) 141–156. CrossRefGoogle Scholar
  417. 426.
    D. M. Blunt, B. Rebbechi: Propeller Synchrophase Angle Optimisation Study. 28th AIAA Aeroacoustics Conference, Rome, IT 2007, Paper AIAA 2007-3584. Google Scholar
  418. 427.
    S. Johansson et al.: Performance of a Multiple versus a Single Reference MIMO ANC Algorithm Based on a Dornier 328 Test Data Set. In: Proceedings of ACTIVE 97, The 1997 International Symposium on Active Control of Sound and Vibration, Budapest, pp. 521–528. Google Scholar
  419. 428.
    J. Foht, H. Mattauch, D. Sachau: Position Optimization of Laudspeakers and Microphones of a Large Active Noise System. AIA-DAGA 2013, Programmheft: S. 339. Google Scholar
  420. 429.
    C. Hinze, M. Wandel, D. Sachau: Optimierung der Position von Aktoren und Sensoren für ein aktives Gegenschallsystem. DAGA 2014, Programmheft: S. 265. Google Scholar
  421. 430.
    J. Foht, S. Jukkert, D. Sachau: Beruhigt schlafen. Aktive Schallreduktion in Wohn- und Schlafräumen. dSPACE Magazin 1/2004, 36–40. Google Scholar
  422. 431.
    L. Liu, K. Kuo: Active noise control systems integrated with infant cry detection and classification for infant incubators. J. Acoust. Soc. Am. 131(4), Pt. 2 (2012) 3381 (Abstract). Google Scholar
  423. 432.
    C. Thyes et al.: Adaptronische akustische Maskierung von Maschinengeräuschen. DAGA 2012, Programmheft: S. 327. Google Scholar
  424. 433.
    C. Thyes et al.: Acoustic masking by means of an active system. AIA-DAGA 2013, Programmheft: S. 238. Google Scholar
  425. 434.
    C. Thyes et al.: Aktive akustische Maskierung an einem Büro-Container. DAGA 2014, Programmheft: S. 264. Google Scholar
  426. 435.
    R. Skowronek, G. Krump: Private Telefonie im Fahrzeuginnenraum durch Sprachmaskierung. DAGA 2015, Programmheft: S. 121. Google Scholar
  427. 436.
    P.-A. Gauthier, A. Berry: Adaptive wave field synthesis for active sound field reproduction: Experimental results. J. Acoust. Soc. Am. 123 (2008) 1991–2002. CrossRefGoogle Scholar
  428. 437.
    W. B. Conover, W. F. M. Gray: Noise Reducing System for Transformers. U.S. Patent US 2,776,020. Anmeldung: 9. 2. 1955. Erteilung: 1. 1. 1957. Google Scholar
  429. 438.
    H.-J. Lee et al.: An Active Noise Control System for Controlling Humming Noise Generated by a Transformer. Internoise 97, Budapest 1997, Proc.: Vol. I, pp. 517–520. Google Scholar
  430. 439.
    G. B. B. Chaplin, R. A. Smith, R. G. Bearcroft: The Cancelling of Vibrations Transmitted through a Fluid in a Containing Vessel. International Patent Application WO 81/01479 A1. Veröffentlichung: 28. 5. 1981. Priorität (GB): 10. 11. 1979. Google Scholar
  431. 440.
    Y. Hori et al.: Vibration/Noise Reduction Device for Electrical Apparatus. U.S. Patent US 4,435,751. Erteilung: 6. 3. 1984. Priorität (JP): 3. 7. 1980. Google Scholar
  432. 441.
    W. Gossman, G. P. Eatwell: Active High Transmission Loss Panel. U.S. Patent US 5,315,661. Anmeldung: 12. 8. 1992. Erteilung: 24. 5. 1994. Google Scholar
  433. 442.
    S. Hildebrand, Z. Q. Hu: Global Quieting System for Stationary Induction Apparatus. U.S. Patent US 5,617,479. Erstanmeldung: 3. 9. 1993. Erteilung: 1. 4. 1997. Google Scholar
  434. 443.
    O. L. Angevine: Active Cancellation of the Hum of Large Electric Transformers. Internoise 92, Toronto, CA, 1992, Proc.: pp. 313–316. Google Scholar
  435. 444.
    O. L. Angevine: Active Systems for Attenuation of Noise. Int. J. Active Control 1 (1995) 65–78. Google Scholar
  436. 445.
    A. Niepenberg, D. Krahé: Aktive Schalldämpfung für Mittel- und Hochspannungstransformatoren. DAGA 2015, Programmheft: S. 241. Google Scholar
  437. 446.
    Y. Ai, X. Qiu, C. H. Hansen: Minimizing wind effects on active control systems for attenuating outdoor transformer noise. Noise Control Engineering J. 48 (2000) 130–135. CrossRefGoogle Scholar
  438. 447.
    X. Qiu, X. Li, Y. Ai, C. H. Hansen: A waveform synthesis algorithm for active control of transformer noise: Implementation. Applied Acoustics 63 (2002) 467–479. CrossRefGoogle Scholar
  439. 448.
    M. R. Schroeder (2007): persönliche Mitteilung (nach einer Zeitungsmeldung in den USA). Google Scholar
  440. 449.
    S. Ise, H. Yano, H. Tachibana: Basic study on active noise barrier. J. Acoust. Soc. Japan (E) 12 (1991) 299–306. CrossRefGoogle Scholar
  441. 450.
    H.-I. Koh, M. Möser: Improved shielding effect of noise screens by means of actively controlled headpieces. CFA/DAGA ’04, Congres Joint 7eme Congres Français d’Acoustique – 30. Deutsche Jahrestagung für Akustik, Strasbourg, FR 2004. Proc.: pp. 77–78. Google Scholar
  442. 451.
    T. Nakashima, S. Ise: Active noise barrier for far field noise reduction. 18th International Congress on Acoustics (ICA 2004). Proc.: Paper We4.D.4, pp. III-2161 – III-2164. Google Scholar
  443. 452.
    A. P. Berkhoff: Control strategies for active noise barriers using near-field error sensing. J. Acoust. Soc. Am. 118 (2005) 1469–1479. CrossRefGoogle Scholar
  444. 453.
    N. Han, X. Qiu: A study of sound intensity control for active noise barriers. Applied Acoustics 68 (2007) 1297–1306. CrossRefGoogle Scholar
  445. 454.
    P. Pondrom et al.: eVADER: Electrical Vehicle Alert for Detection and Emergency Response. AIA-DAGA 2013, Programmheft: S. 340. Google Scholar
  446. 455.
    P. Pondrom et al.: Lautsprecher-Array für die gerichtete Abstrahlung von akustischen Warnsignalen von Elektrofahrzeugen. DAGA 2014, Programmheft: S. 114–115. Google Scholar
  447. 456.
    Minimum Sound Requirements for Hybrid and Electric Vehicles. J. Acoust. Soc. Am. 134(5), Pt. 2 (2013) 3978–3979. Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.Drittes Physikalisches InstitutUniversität GöttingenGöttingenDeutschland

Personalised recommendations