Advertisement

Returns to Scale Revisited – Towards Cross-RTS

  • Andreas Kleine
  • Wilhelm Rödder
  • Andreas Dellnitz
Chapter

Abstract

In neoclassical economic theory, the production function expresses the technological efficient relationship between inputs and one output (see Shephard 1970). In this theoretical framework, the scale elasticity or returns to scale (RTS), respectively, is a measure of the outputs’ reaction with respect to radial change of inputs; it is one of the most commonly used indices in economic theory. Later, Starrett (1977) and Panzar/Willig (1977) generalized the concept of RTS for multiple outputs. For either simple or multiple outputs, we might have constant, increasing and decreasing RTS.

Keywords

Data Envelopment Analysis Data Envelopment Analysis Model Data Envelopment Analysis Approach Scale Elasticity German Theatre 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, T. R./ Hollingsworth, K./ Inman, L.: The Fixed Weighting Nature of A Cross-Evaluation Model, in: Journal of Productivity Analysis (17) 2002, pp. 249–255.Google Scholar
  2. Banker, R. D.: A Game Theoretic Approach to Measuring Efficiency, in: European Journal of Operational Research (5) 1980, pp. 262–266.Google Scholar
  3. Banker, R. D./ Charnes, A./ Cooper, W. W.: Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis, in: Management Science (30) 1984, pp. 1078–1091.Google Scholar
  4. Banker, R. D./ Charnes, A./ Cooper, W. W./ Clarke, R.: Constrained Game Formulations and Interpretations for Data Envelopment Analysis, in: European Journal of Operational Research (40) 1989, pp. 299–308.Google Scholar
  5. Banker, R. D./ Thrall, R. M.: Estimation of Returns to Scale using Data Envelopment Analysis, in: European Journal of Operational Research (62) 1992, pp. 74–84.Google Scholar
  6. Bøgetoft, P.: DEA on Relaxed Convexity Assumptions, in: Management Science (42) 1996, pp. 457–465.Google Scholar
  7. Charnes, A./ Cooper, W. W.: The Non-Archimedean CCR Ratio for Efficiency Analysis – A Rejoinder to Boyd and Färe, in: European Journal of Operational Research (15) 1984, pp. 333–334.Google Scholar
  8. Charnes, A./ Cooper, W. W./ Rhodes, E.: Measuring the Efficiency of Decision Making Units, in: European Journal of Operational Research (2) 1978, pp. 429–444.Google Scholar
  9. Debreu, G.: The Coefficient of Resource Utilization, in: Econometrica: Journal of the Econometric Society (19) 1951, pp. 273–292.Google Scholar
  10. Deutscher Bühnenverein: Theaterstatistik 2011/2012. Deutscher Bühnenverein, Bundesverband der Theater und Orchester, Köln 2013.Google Scholar
  11. Doyle, J./ Green, R.: Efficiency and Cross-efficiency in DEA – Derivations, Meanings and Uses, in: Journal of Operational Research Society (45) 1994, pp. 567–578.Google Scholar
  12. Dyckhoff, H./ Ahn, H.: Verallgemeinerte DEA-Modelle zur Performanceanalyse, in: Zeitschrift für Betriebswirtschaft (80) 2010, pp. 1249–1276.Google Scholar
  13. Dyckhoff, H./ Allen, K.: Measuring Ecological Efficiency with Data Envelopment Analysis (DEA), in: European Journal of Operational Research (132) 2001, pp. 69–82.Google Scholar
  14. Dyckhoff, H./ Gutgesell, S.: Properties of DEA-integrated Balance and Specialization Measures, in: OR Spectrum (37) 2015, pp. 503–527.Google Scholar
  15. Dyckhoff, H./ Spengler, T. S.: Produktionswirtschaft – Eine Einführung für Wirtschaftsingenieure, 3. Aufl., Berlin/Heidelberg 2010.Google Scholar
  16. Färe, R./ Svensson, L.: Congestion of Production Factors, in: Econometrica (48) 1980, pp. 1745–1753.Google Scholar
  17. Farrell, M. J.: The Measurement of Productive Efficiency, in: Journal of the Royal Statistical Society (120) 1957, pp. 253–290.Google Scholar
  18. Førsund, F. R.: On the Calculation of the Scale Elasticity in DEA Models, in: The Journal of Productivity Analysis (7) 1996, pp. 283–302.Google Scholar
  19. Førsund, F. R./ Hjalmarsson, L.: Calculating Scale Elasticity in DEA Models, in: Journal of the Operational Research Society (5) 2004, pp. 1023–1038.Google Scholar
  20. Hackman, S. T.: Production Economics – Integrating the Microeconomic and Engineering Perspectives. Berlin 2010.Google Scholar
  21. Kleine, A./ Hoffmann, S.: Dynamische Effizienzbewertung öffentlicher Dreispartentheater mit der Data Envelopment Analysis. Diskussionsbeitrag, FernUniversität in Hagen 2013.Google Scholar
  22. Last, A.-K./ Wetzel, H.: The Efficiency of German Public Theaters – A Stochastic Frontier Analysis Approach, in: Journal of Cultural Economics (34) 2010, pp. 89–110.Google Scholar
  23. Liang, L./ Wu, J./ Cook, W. D./ Zhu, J.: The DEA Game Cross-Efficiency Model and Its Nash Equilibrium, in: Operations Research (56) 2008, pp. 1278–1288.Google Scholar
  24. Lozano, S.: Information Sharing in DEA – A Cooperative Game Theory Approach, in: European Journal of Operational Research (222) 2012, pp. 558–565.Google Scholar
  25. Marco-Serrano, F.: Monitoring Managerial Efficiency in the Performing Arts – A Regional Theatres Network Perspective, in: Annals of Operations Research (145) 2006, pp. 167–181.Google Scholar
  26. Panzar, J. C./ Willig, R. D.: Economies of Scale in Multi-output Production, in: Quarterly Journal of Economics (91) 1977, pp. 481–493.Google Scholar
  27. Podinovski, V. V./ Førsund, F. R./ Krivonozhko, V. E.: A Simple Derivation of Scale Elasticity in Data Envelopment Analysis, in: European Journal of Operational Research (197) 2009, pp. 149–153.Google Scholar
  28. Reucher, E./ Rödder, W./ Lo, M. C./ Kopittke, B.: Ranking Enterprises by Cross-Efficiency – A DEA Approach for Semiconductor Fabs, in: Zeitschrift für Betriebswirtschaft (78) 2008, pp. 289–306.Google Scholar
  29. Rödder, W./ Reucher, E.: A Consensual Peer-based DEA-Model with Optimized Cross-Efficiencies – Input Allocation instead of Radial Reduction, in: European Journal of Operational Research (212) 2011, pp. 148–154.Google Scholar
  30. Rödder, W./ Reucher, E.: Advanced X-Efficiencies for CCR- and BCC-Models – Towards Peer-based DEA Controlling, in: European Journal of Operational Research (219) 2012, pp. 467–476.Google Scholar
  31. Shephard, R. W.: The Theory of Cost and Production Functions, Princeton 1970.Google Scholar
  32. Soares de Mello, J. C./ Meza, L. A./ Quintanilha da Silveira, J./ Gomes, E. G.: About Negative Efficiencies in Cross Evaluation BCC Input Oriented Models, in: European Journal of Operational Research (229) 2013, pp. 732–737.Google Scholar
  33. Starrett, D.A.: Measuring Returns to Scale in the Aggregate, and the Scale Effect of Public Goods, in: Econometrica (45) 1977, pp. 1439–1455.Google Scholar
  34. Tobias, K.: Kosteneffizientes Theater? – Deutsche Bühnen im DEA-Vergleich, Dortmund 2003.Google Scholar
  35. Tone, K./ Sahoo, K.: Degree of Scale Economies and Congestion – A Unified DEA Approach, in: European Journal of Operational Research (158) 2004, pp. 755–772.Google Scholar
  36. Wu, J./ Liang, L./ Chen, Y.: DEA Game Cross-efficiency Approach to Olympic Rankings, in: Omega (37) 2009, pp. 909–918.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • Andreas Kleine
    • 1
  • Wilhelm Rödder
    • 1
  • Andreas Dellnitz
    • 1
  1. 1.HagenDeutschland

Personalised recommendations