Advertisement

Gendoping pp 193-215 | Cite as

Genetische Tests im Sport: Können wir schon empirische Evidenz von empirischem Nonsens unterscheiden?

  • Elmo NeubergerEmail author
  • Perikles Simon
Chapter
  • 1.5k Downloads

Zusammenfassung

„Schöne neue Welt“. Wäre es nicht schön, wenn wir vor all den Mühen und schweißtreibenden Anstrengungen wüssten, ob wir oder unsere Kinder einmal zur Weltelite gehören können? Ob wir im sportlichen Bereich eine Chance haben, zu den Top 10 der schnellsten Sprinter oder ausdauerndsten Menschen zu gehören? – Vermeintliche „direct‐to‐consumer“ genetische Tests sollen Aufschlüsse über die sportlichen Fähigkeiten geben (Collier, 2012).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Allen, H. L., Estrada, K., Lettre, G., Berndt, S. I., Weedon, M. N., Rivadeneira, F. et al. (2010). Hundreds of variants clustered in genomic loci and biological pathways affect human height. In Nature, 467 (7317), S. 832‐838.Google Scholar
  2. Altshuler, D., Daly, M. J. & Lander, E. S. (2008). Genetic Mapping in Human Disease. In Science, 322 (5903), S. 881‐888.Google Scholar
  3. Altshuler, D., Gibbs, R. A., Peltonen, L., Dermitzakis, E., Schaffner, S. F., Yu, F. L. et al. (2010). Integrating common and rare genetic variation in diverse human populations. In Nature, 467 (7311), S. 52‐58.Google Scholar
  4. Bouchard, C., An, P., Rice, T., Skinner, J. S., Wilmore, J. H., Gagnon, J. et al. (1999). Familial aggregation of VO(2max) response to exercise training: results from the HERITAGE Family Study. In J Appl Physiol, 87 (3), S. 1003‐1008.Google Scholar
  5. Bouchard, C., Daw, E. W., Rice, T., Perusse, L., Gagnon, J., Province, M. A. et al. (1998). Familial resemblance for VO2max in the sedentary state: the HERITAGE Family Study. In Med Sci Sports Exerc, 30 (2), S. 252‐258.Google Scholar
  6. Carayol, J., Tores, F., Konig, I. R., Hager, J. & Ziegler, A. (2010). Evaluating diagnostic accuracy of genetic profiles in affected offspring families. In Stat in Med, 29 (22), S. 2359‐2368.Google Scholar
  7. Civelek, M. & Lusis, A. J. (2014). Systems genetics approaches to understand complex traits. In Nat Rev Genet, 15 (1), S. 34‐48.Google Scholar
  8. Collier, R. (2012). Genetic tests for athletic ability: science or snake oil? In CMAJ, 184 (1), E43‐44.Google Scholar
  9. Encode Project Consortium (2012). An integrated encyclopedia of DNA elements in the human genome. In Nature, 489 (7414), S. 57‐74.Google Scholar
  10. De la Chapelle, A., Traskelin, A. L. & Juvonen, E. (1993). Truncated erythropoietin receptor causes dominantly inherited benign human erythrocytosis. In Proceedings of the National Academy of Sciences of the United States of America, 90 (10), S. 4495‐4499.Google Scholar
  11. De, R., Bush, W. S. & Moore, J. H. (2014). Bioinformatics challenges in genome‐wide association studies (GWAS). In Methods Mol Biol, 1168, S. 63‐81.Google Scholar
  12. Duncan, E. L., Danoy, P., Kemp, J. P., Leo, P. J., McCloskey, E., Nicholson, G. C. et al. (2011). Genome‐Wide Association Study Using Extreme Truncate Selection Identifies Novel Genes Affecting Bone Mineral Density and Fracture Risk. In PLoS Genet, 7 (4).Google Scholar
  13. Ehlert, T., Simon, P. & Moser, D. A. (2013). Epigenetics in Sports. In Sports Med, 43 (2), S. 93‐110.Google Scholar
  14. Fackenthal, J. D. & Olopade, O. I. (2007). Breast cancer risk associated with BRCA1 and BRCA2 in diverse populations. In Nature Reviews Cancer, 7 (12), S. 937‐948.Google Scholar
  15. Foraita, R., Jager, M. & Pigeot, I. (2015). [Methodological challenges for genome‐based prediction of diseases]. In Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz, 58 (2), S. 131‐138.Google Scholar
  16. Gieger, C., Radhakrishnan, A., Cvejic, A., Tang, W. H., Porcu, E., Pistis, G. et al. (2011). New gene functions in megakaryopoiesis and platelet formation. In Nature, 480 (7376), S. 201‐208.Google Scholar
  17. Grassmann, F., Fritsche, L. G., Keilhauer, C. N., Heid, I. M. & Weber, B. H. (2012). Modelling the genetic risk in age‐related macular degeneration. In PLoS One, 7 (5), E37979.Google Scholar
  18. Humphries, S. E., Cooper, J. A., Talmud, P. J. & Miller, G. J. (2007). Candidate gene genotypes, along with conventional risk factor assessment, improve estimation of coronary heart disease risk in healthy UK men. In Clin Chem, 53 (1), S. 8‐16.Google Scholar
  19. Jakobsdottir, J., Gorin, M. B., Conley, Y. P., Ferrell, R. E. & Weeks, D. E. (2009). Interpretation of Genetic Association Studies: Markers with Replicated Highly Significant Odds Ratios May Be Poor Classifiers. In PLoS Genet, 5 (2).Google Scholar
  20. Janssens, A. C. & van Duijn, C. M. (2008). Genome‐based prediction of common diseases: advances and prospects. In Hum Mol Genet, 17 (R2), R166‐173.Google Scholar
  21. Jostins, L. & Barrett, J. C. (2011). Genetic risk prediction in complex disease. In Human Mol Genet, 20 (R2), R182‐188.Google Scholar
  22. Koboldt, D. C., Steinberg, K. M., Larson, D. E., Wilson, R. K. & Mardis, E. R. (2013). The Next‐Generation Sequencing Revolution and Its Impact on Genomics. In Cell, 155 (1), S. 27‐38.Google Scholar
  23. Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C., Baldwin, J. et al. (2001). Initial sequencing and analysis of the human genome. In Nature, 409 (6822), S. 860‐921.Google Scholar
  24. Liebers, R., Rassoulzadegan, M. & Lyko, F. (2014). Epigenetic regulation by heritable RNA. In PLoS Genet, 10 (4), E1004296.Google Scholar
  25. Lindholm, M. E., Marabita, F., Gomez‐Cabrero, D., Rundqvist, H., Ekstrom, T. J., Tegner, J. et al. (2014). An integrative analysis reveals coordinated reprogramming of the epigenome and the transcriptome in human skeletal muscle after training. In Epigenetics, 9 (12), S. 1557‐1569.Google Scholar
  26. Locke, A. E., Kahali, B., Berndt, S. I., Justice, A. E., Pers, T. H., Day, F. R. et al. (2015). Genetic studies of body mass index yield new insights for obesity biology. In Nature, 518 (7538), S. 197‐206.Google Scholar
  27. Ma, F., Yang, Y., Li, X., Zhou, F., Gao, C., Li, M. et al. (2013). The association of sport performance with ACE and ACTN3 genetic polymorphisms: a systematic review and meta‐analysis. In PLoS One, 8 (1), E54685.Google Scholar
  28. Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J. et al. (2009). Finding the missing heritability of complex diseases. In Nature, 461 (7265), S. 747‐753.Google Scholar
  29. Maron, B. J., Maron, M. S. & Semsarian, C. (2012). Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. In J Am Coll Cardiol, 60 (8), S. 705‐715.Google Scholar
  30. Montgomery, H. E., Marshall, R., Hemingway, H., Myerson, S., Clarkson, P., Dollery, C. et al. (1998). Human gene for physical performance. In Nature, 393 (6682), S. 221‐222.Google Scholar
  31. North, K. N., Yang, N., Wattanasirichaigoon, D., Mills, M., Easteal, S. & Beggs, A. H. (1999). A common nonsense mutation results in alpha‐actinin‐3 deficiency in the general population. In Nat Genet, 21 (4), S. 353‐354.Google Scholar
  32. OMIM. Online Mendelian Inheritance in Man, OMIM®. McKusick‐Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). Online‐Quelle: http://omim.org/ (letzter Zugriff: 15.09.2015).Google Scholar
  33. Pitsiladis, Y., Wang, G., Wolfarth, B., Scott, R., Fuku, N., Mikami, E. et al. (2013). Genomics of elite sporting performance: what little we know and necessary advances. In Br J Sports Med, 47 (9), S. 550‐555.Google Scholar
  34. Rankinen, T., Perusse, L., Rauramaa, R., Rivera, M. A., Wolfarth, B. & Bouchard, C. (2001). The human gene map for performance and health‐related fitness phenotypes. In Med Sci Sports Exerc, 33 (6), S. 855‐867.Google Scholar
  35. Schrodi, S. J., Mukherjee, S., Shan, Y., Tromp, G., Sninsky, J. J., Callear, A. P. et al. (2014). Genetic‐based prediction of disease traits: prediction is very difficult, especially about the future. In Front Genet, 5, S. 162.Google Scholar
  36. Schulze, T. G., Akula, N., Breuer, R., Steele, J., Nalls, M. A., Singleton, A. B. et al. (2014). Molecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder. In World J Biol Psychiatry, 15 (3), S. 200‐208.Google Scholar
  37. Speliotes, E. K., Willer, C. J., Berndt, S. I., Monda, K. L., Thorleifsson, G., Jackson, A. U. et al. (2010). Association analyses of 249, 796 individuals reveal 18 new loci associated with body mass index. In Nat Genet, 42 (11), S. 937‐U953.Google Scholar
  38. Teslovich, T. M., Musunuru, K., Smith, A. V., Edmondson, A. C., Stylianou, I. M., Koseki, M. et al. (2010). Biological, clinical and population relevance of 95 loci for blood lipids. In Nature, 466 (7307), S. 707‐713.Google Scholar
  39. Van Hoek, M., Dehghan, A., Witteman, J. C., van Duijn, C. M., Uitterlinden, A.G., Oostra, B. A. et al. (2008). Predicting type 2 diabetes based on polymorphisms from genome‐wide association studies: a population‐based study. In Diabetes, 57 (11), S. 3122‐3128.Google Scholar
  40. Visscher, P. M., Brown, M. A., McCarthy, M. I. & Yang, J. (2012). Five Years of GWAS Discovery. In American Journal of Human Genetics, 90 (1), S. 7‐24.Google Scholar
  41. Wang, G., Padmanabhan, S., Wolfarth, B., Fuku, N., Lucia, A., Ahmetov, II. et al. (2013). Genomics of elite sporting performance: what little we know and necessary advances. In Adv Genet, 84, S. 123‐149.Google Scholar
  42. Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H. et al. (2014). The NHGRI GWAS Catalog, a curated resource of SNP‐trait associations. In Nucleic Acids Res, 42 (Database issue), D1001‐1006.Google Scholar
  43. Wolfarth, B., Rankinen, T., Hagberg, J. M., Loos, R. J., Perusse, L., Roth, S. M. et al. (2014). Advances in exercise, fitness, and performance genomics in 2013. In Med Sci Sports Exerc, 46 (5), S. 851‐859.Google Scholar
  44. Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S. et al. (2014). Defining the role of common variation in the genomic and biological architecture of adult human height. In Nat Genet, 46 (11), S. 1173‐1186.Google Scholar
  45. Wray, N. R., Yang, J., Hayes, B. J., Price, A. L., Goddard, M. E. & Visscher, P. M. (2013). Pitfalls of predicting complex traits from SNPs. In Nat Rev Genet, 14 (7), S. 507‐515.Google Scholar
  46. Yang, N., MacArthur, D. G., Gulbin, J. P., Hahn, A. G., Beggs, A. H., Easteal, S. et al. (2003). ACTN3 genotype is associated with human elite athletic performance. In American Journal of Human Genetics, 73 (3), S. 627‐631.Google Scholar
  47. Yvert, T., He, Z. H., Santiago, C., Hu, Y., Li, Y. C., Gomez‐Gallego, F. et al. (2012). Acyl coenzyme A synthetase long‐chain 1 (ACSL1) gene polymorphism (rs6552828) and elite endurance athletic status: a replication study. In PLoS One, 7 (7), E41268.Google Scholar
  48. Zheng, S. L., Sun, J., Wiklund, F., Smith, S., Stattin, P., Li, G. et al. (2008). Cumulative association of five genetic variants with prostate cancer. In N Engl J Med, 358 (9), S. 910‐919.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.Institut für SportwissenschaftJohannes Gutenberg Universität MainzMainzDeutschland
  2. 2.Abteilung für SportmedizinJohannes Gutenberg‐Universität MainzMainzDeutschland

Personalised recommendations