Estimation of Plausible Values Considering Partially Missing Background Information: A Data Augmented MCMC Approach

  • Christian Aßmann
  • Christoph Gaasch
  • Steffi Pohl
  • Claus H. Carstensen
Chapter

Abstract

The National Educational Panel Study (NEPS) provides data on the development of competencies across the whole life span. Plausible values as a measure of individual competence are provided by explicitly including background variables that capture individual characteristics in the corresponding Item Response Theory model. Despite tremendous efforts in field work, missing values in the background variables can occur. Adequate estimation routines are needed to reflect the uncertainty stemming from missing values in the background variables with regard to plausible values. We propose an estimation strategy based on Markov Chain Monte Carlo techniques that simultaneously addresses missing values in background variables and estimates parameters characterizing the distribution of plausible values. We evaluate the validity of our approach with respect to statistical accuracy in a simulation study that allows for controlling the mechanism that causes missing data. The results show that the proposed approach is capable of recovering the true regression parameters that describe the relationship between latent competence scores and background variables and thus of recovering the distribution that characterizes plausible values. The approach is illustrated in an example using competence test data on mathematical abilities of Grade-5 students.

Keywords

Migration Covariance Eter Autocorrelation OECD 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, R. J., & Wilson, M. R. (1996). Formulating the Rasch model as a mixed coefficients multinomial logit. In G. Engelhardt, & M. Wilson (Eds.), Objective measurement: Theory into practice (Vol. 3, pp. 143 – 166). Norwood, NJ: Ablex.Google Scholar
  2. Adams, R. J., Wilson, M. R., & Wang, W. C. (1997a). The multidimensional random coefficients multinomial logit model. Applied Psychological Measurement, 21(1), 1–23.Google Scholar
  3. Adams, R. J., Wilson, M. R., & Wu, M. (1997b). Multilevel item response models: An approach to errors in variables regression. Journal of Educational and Behavioral Statistics, 22(1), 47 – 76.Google Scholar
  4. Albert, J. H. (1992). Bayesian estimation of normal ogive item response curves using gibbs sampling. Journal of Educational Statistics, 17(3), 251–269.Google Scholar
  5. Allen, N. L., Carson, J. E., Johnson, E. G., & Mislevy, R. J. (2001). Scaling procedures. In N. L. Allen, J. R. Donoghue, & T. L. Schoeps (Eds.), The NAEP 1998 technical report. Washington, DC: U. S. Department of Education.Google Scholar
  6. Andrich, D. (1985). A latent trait model for items with response dependencies: Implications for test construction and analysis. In S. E. Embretson (Ed.), Test design—Developments in psychology and psychometrics (pp. 245 – 275). Orlando: Academic Press.Google Scholar
  7. Aßmann, C., & Boysen-Hogrefe, J. (2011). A Bayesian approach to model-based clustering for binary panel probit models. Computational Statistics & Data Analysis, 55(1), 261–279.Google Scholar
  8. Blossfeld, H.-P., Roßbach, H.-G., & von Maurice, J. (Eds.). (2011). Education as a lifelong process: The German National Educational Panel Study (NEPS) [Special issue]. Zeitschrift für Erziehungswissenschaft, 14. Wiesbaden: VS Verlag für Sozialwissenschaften.Google Scholar
  9. Chib, S. (2001). Markov chain monte carlo methods: Computation and inference. In J. J. Heckmann, & E. Leamer (Eds.), Handbook of econometrics (Vol. 5, pp. 3569–3649). Amsterdam, Netherlands: North Holland.Google Scholar
  10. Duchhardt, C., & Gerdes, A. (2012). NEPS technical report for mathematics—Scaling results of Starting Cohort 3 in fifth grade. (NEPS Working Paper No. 19). Bamberg: University of Bamberg, National Educational Panel Study.Google Scholar
  11. Edwards, M. C. (2010). A Markov chain Monte Carlo approach to confirmatory item factor analysis. Psychometrika, 75(3), 474–497.Google Scholar
  12. Fox, J.-P., & Glas Cees A. W. (2001). Bayesian estimation of a multilevel IRT model using gibbs sampling. Psychometrika, 66(2), 271–288.Google Scholar
  13. Geweke, J. F. (1999). Using simulation methods for bayesian econometric models: Inference, development and communication. Econometric Reviews, 18(1), 1–73.Google Scholar
  14. Koop, G. (2003). Bayesian econometrics. Hoboken, NJ: Wiley.Google Scholar
  15. Masters, G. N. (1982). A rasch model for partial credit scoring. Psychometrika, 47(2), 149–174.Google Scholar
  16. Mislevy, R. J. (1991). Randomization-based inference about latent variables for complex samples. Psychometrika, 56(2), 177–196.Google Scholar
  17. Neumann, I., Duchhardt, C., Ehmke, T., Grüßing, M., Heinze, A., & Knopp, E. (2012). Modeling and assessing of mathematical competence over the lifespan. Manuscript submitted for publication.Google Scholar
  18. OECD. (2009). PISA 2006 technical report (Report No. 56393 2009). Paris: OECD Publishing.CrossRefGoogle Scholar
  19. OECD. (2012). PISA 2009 technical report (Report No. 59805 2012). Paris: OECD Publishing.CrossRefGoogle Scholar
  20. Patz, R. J., & Junker, B. W. (1999). A straightforward approach to markov chain monte carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24(2), 146 – 178.Google Scholar
  21. Pohl, S., Gräfe, L., & Rose, N. (2014). Dealing with omitted and not-reached items in competence tests. Evaluating approaches accounting for missing responses in item response theory models. Educational and Psychological Measurement, 74(3), 1–30.Google Scholar
  22. Pohl, S., & Carstensen, C. (2012). NEPS technical report—Scaling the data of the competence tests. (NEPS Working Paper No. 14). Bamberg: University of Bamberg, National Educational Panel Study.Google Scholar
  23. Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.Google Scholar
  24. Roberts, G., & Smith, A. (1994). Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms. Stochastic Processes and its Applications, 49(2), 207 – 216.Google Scholar
  25. Rubin, D. B. (1987). Multiple imputation for nonresponse in surveys. Hoboken, NJ: Wiley.CrossRefGoogle Scholar
  26. Skopek, J., Pink, S., & Bela, D. (2012). Data manual. Starting Cohort 3—From lower to upper secondary school. NEPS SC3 1.0.0. (NEPS Research Data Paper). Bamberg: University of Bamberg, National Educational Panel Study.Google Scholar
  27. Tanner, M. A., & Wong, W. H. (1987). The calculation of posterior distributions by data augmentation. Journal of the American Statistical Association, 82(398), 528–540.Google Scholar
  28. Warm, T. A. (1989). Weighted likelihood estimation of ability in item response theory. Psychometrika, 54(3), 427 – 450.Google Scholar
  29. Weinert, S., Artelt, C., Prenzel, M., Senkbeil, M., Ehmke, T., & Carstensen, C. H. (2011). Development of competencies across the life span. In H.-P. Blossfeld, H.-G. Roßbach, & J. von Maurice (Eds.), Zeitschrift für Erziehungswissenschaft, 14. Education as a lifelong process: The German National Educational Panel Study (NEPS) (pp. 67 – 86). Wiesbaden: VS Verlag für Sozialwissenschaften.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • Christian Aßmann
    • 1
  • Christoph Gaasch
    • 1
  • Steffi Pohl
    • 2
  • Claus H. Carstensen
    • 1
  1. 1.BambergDeutschland
  2. 2.BerlinDeutschland

Personalised recommendations