Biodemographie der Fertilität: Ein Überblick und Perspektiven zukünftiger Forschung

  • Melinda C. Mills
  • Felix C. Tropf
Part of the Kölner Zeitschrift für Soziologie und Sozialpsychologie book series (KZSS)


In sozialwissenschaftlichen Untersuchungen von Fertilitätsentscheidungen und –verhalten sind biodemographische Ansätze bislang kaum integriert worden, was zu überwiegend sozial-deterministischen Theorien und Befunden geführt hat. Der vorliegende Beitrag diskutiert zunächst die Gründe für diese weitgehend fehlende Integration, gibt dann einen Überblick über frühere Untersuchungen, fasst die bisher vorliegenden Erkenntnisse zusammen und zeigt schließlich Perspektiven zukünftiger Forschung auf. Ausgehend von grundlegenden Arbeiten zu den proximalen Determinanten der Fertilität werden verhaltensgenetische (Familien- und Zwillings-)Studien besprochen, die das Ausmaß genetischer Einflüsse auf Fertilitätsmerkmale isolieren konnten. Anschließend wird die Forschung zur Gen-Umwelt-Interaktion, zur Bedeutung von kohorten- und länderspezifischen Analysen sowie von Modellen, die Bildung und Fertilitätsentscheidungen vorausgehende Motivlagen berücksichtigen, betrachtet. Darüber hinaus werden Möglichkeiten und Grenzen molekulargenetischer Studien besprochen, bevor schließlich ein kurzer Überblick über Arbeiten aus der evolutionären Anthropologie und Biologie mit einem Fokus auf den Aspekt der natürlichen Auslese gegeben wird. Es zeigt sich, dass biologische und genetische Faktoren für das Verständnis und die Vorhersage von Fertilitätsmerkmalen relevant sind und dass ihre Interaktion mit sozialen Umweltfaktoren zentral für das Verständnis von Fertilitätsoutcomes ist. Für die Vorhersage zukünftiger Fertilitätstrends wird die Untersuchung des Zusammenspiels von Gen-Umwelt-Faktoren sowie die Nutzbarmachung neuer Datenquellen und die Integration neuer Methoden eine wesentliche Rolle spielen.


Fertilität Alter bei Erstgeburt Endgültige Kinderzahl Genetik Verhaltensgenetik Molekulargenetik Natürliche Auslese 

The Biodemography of Fertility: A Review and Future Research Frontiers


The social sciences have been reticent to integrate a biodemographic approach to the study of fertility choice and behaviour, resulting in theories and findings that are largely socially-deterministic. The aim of this paper is to first reflect on reasons for this lack of integration, provide a review of previous examinations, take stock of what we have learned until now and propose future research frontiers. We review the early foundations of proximate determinants followed by behavioural genetic (family and twin) studies that isolated the extent of genetic influence on fertility traits. We then discuss research that considers gene and environment interaction and the importance of cohort and country-specific estimates, followed by multivariate models that explore motivational precursors to fertility and education. The next section on molecular genetics reviews fertility-related candidate gene studies and their shortcomings and on-going work on genome wide association studies. Work in evolutionary anthropology and biology is then briefly examined, focusing on evidence for natural selection. Biological and genetic factors are relevant in explaining and predicting fertility traits, with socio-environmental factors and their interaction still key in understanding outcomes. Studying the interplay between genes and the environment, new data sources and integration of new methods will be central to understanding and predicting future fertility trends.


Fertility Age at first birth Number of children ever born Genetics Behavioural genetics Molecular genetics Natural selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderton, Douglas L., Noriko O. Tsuya, Lee L. Bean, and Geraldine P. Mineau. 1987. Intergenerational transmission of relative fertility and life course patterns. Demography 24:467–480.CrossRefGoogle Scholar
  2. Balbo, Nicoletta, and Melinda Mills. 2011. Social capital and pressure in fertility decision- making: Second and third births in France, Germany and Bulgaria. Population Studies 65:335–351.CrossRefGoogle Scholar
  3. Balbo, Nicoletta, Francesco C. Billari, and Melinda Mills. 2013. Fertility in advanced societies: A review. European Journal of Population 29:1–38.CrossRefGoogle Scholar
  4. Barban, Nicola, Melinda Mills, Jornt J. Mandemakers, and Harold Snieder. 2014. Using genetic markers as instrumental variables to unravel the link between education and fertility. Population Association of America Conference, May 1–3, 2014, Boston, USA.Google Scholar
  5. Barber, J. S. 2000. Intergenerational influences on the entry into parenthood: Mother’s preferences for family and nonfamily behavior. Social Forces 79:319–348.CrossRefGoogle Scholar
  6. Bongaarts, John. 1978. A framework for analysing the proximate determinants of fertility. Population and Development Review 4:105–132.CrossRefGoogle Scholar
  7. Bongaarts, John. 1982. The fertility-inhibiting effects of the intermediate fertility variables. Studies in Family Planning 13:179–189.CrossRefGoogle Scholar
  8. Bongaarts, John, and Robert G. Potter. 1983. Fertility, biology, and behavior: An analysis of proximate determinants . New York: Academic Press.Google Scholar
  9. Boomsma, Dorret, Andreas Busjahn, and Leena Peltonen. 2002. Classical twin studies and beyond. Nature Reviews Genetics 3:872–882.CrossRefGoogle Scholar
  10. Bras, Hilde, Jan Van Bavel, and Kees Mandemakers. 2013. Unraveling the intergenerational transmission of fertility: Genetic and shared-environment effects during the demographic transition in the Netherlands, 1810–1910. The History of the Family 18:116–134.CrossRefGoogle Scholar
  11. Byars, Sean G., Douglas Ewbank, Diddahally R. Govindaraju, and Stephen C. Stearns. 2010. Natural selection in a contemporary human population. Proceedings of the National Academy of Sciences 107:1787–1792.CrossRefGoogle Scholar
  12. Cameron, Nicole M., Frances A. Champagne, Carine Parent, Eric W. Fish, Kumi Ozaki-Kurdoda, and Michael J. Meaney. 2005. The programming of individual differences in defensive responses and reproductive strategies in the rat through variations in maternal care. Neuroscience and Biobehavioral Reviews 29:843–865.CrossRefGoogle Scholar
  13. Carey, James R., and James W. Vaupel. 2005. Biodemography. In Handbook of Population, eds. Dudley L. Poston and Michael Micklin, 625–58. New York: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
  14. Conley, Dalton, Emily Rauscher, Christopher Dawes, Patrik Magnusson, and Mark L. Siegal. 2013. Heritability and the equal environments assumption: Evidence from multiple samples of misclassified twins. Behavior Genetics 43:415–426.CrossRefGoogle Scholar
  15. Davis, Kingsley, and Judith Blake. 1956. Social structure and fertility: An analytical framework. Economic Development and Cultural Change 4:211–235.CrossRefGoogle Scholar
  16. Daw, Jonathan, and Guang Guo. 2011. The influences of three genes on whether adolescents use contraception, USA 1994–2002. Population Studies 65:253–271.CrossRefGoogle Scholar
  17. Duncan, Laramie E., and Matthew C. Keller. 2011. A critical review of the first 10 years of candidate genebyenvironment interaction research in psychiatry. American Journal of Psychology 168:1041–1049.CrossRefGoogle Scholar
  18. Dunne, Micheal, Nicholas G. Martin, et al. 1997. Genetic and environmental contributions to variance in age at first sexual intercourse. Psychological Science 8:211.CrossRefGoogle Scholar
  19. Elks, Cathy E., et al. 2010. Thirty new loci for age at menarche identified by a meta-analysis of genomewide association studies. Nature Genetics 42:1077–1085.CrossRefGoogle Scholar
  20. Fisher, Ronald A. 1930. The genetical theory of natural selection . Oxford: Clarendon Press.CrossRefGoogle Scholar
  21. Foster, Caroline. 2000. The limits to low fertility: A biosocial approach. Population and Development Review 26:209–234.CrossRefGoogle Scholar
  22. Freese, Jeremy. 2008. Genetics and the social science explanation of individual outcomes, American Journal of Sociology 114:S1–35.CrossRefGoogle Scholar
  23. Furstenberg, Frank F., Judith A. Levine, and Jeanne Brooks-Gunn. 1990. The children of teenage mothers: Patterns of early childbearing in two generations. Family Planning Perspectives 22:54–61.CrossRefGoogle Scholar
  24. Guo, Guang. 2005. Twin studies: What can they tell us about nature and nurture? Contexts 4:43.CrossRefGoogle Scholar
  25. Guo, Guang, Yuyiung Tong, and Tianji Cai. 2008. Gene by social-context interactions for number of sexual partners among white male youths: Genetics-informed sociology. American Journal of Sociology 114:S36.CrossRefGoogle Scholar
  26. Guo, Gyuang, and Yuyiung Tong. 2006. Age at first sexual intercourse, genes, and social context: Evidence from twins and the dopamine D4 receptor gene. Demography 43:747–769.CrossRefGoogle Scholar
  27. Haaga, John G. 2003. The biology of behavior and the study of human fertility: A review essay. Population and Development Review 29:505–516.CrossRefGoogle Scholar
  28. Halpern, Carolyn T., Cristine E. Kaestle, Guang Guo, and Denise D. Hallfors. 2007. Gene-environment contributions to young adult sexual partnering. Archives of Sexual Behavior 36:543–554.CrossRefGoogle Scholar
  29. He, Chunyan, Peter Kraft, Constance Chen, Julie E. Buring, Guillaume Paré, Susan E. Hankinson, Stephen J. Chanock, Paul M. Ridker, David J. Hunter, and Daniel I. Chasman. 2009. Genome-wide association studies identify loci associated with age at menarche and age at natural menopause. Nature Genetics 41:724–728.CrossRefGoogle Scholar
  30. Hirschhorn, Joel N. 2009. Genomewide association studies—illuminating biological pathways. New England Journal of Medicine 360:1699–1701.CrossRefGoogle Scholar
  31. Hobcraft, John, and Roderick J. A. Little. 1984. Fertility exposure analysis: A new method for assessing the contribution of proximate determinants to fertility differentials. Population Studies 38:21–45.CrossRefGoogle Scholar
  32. Horwitz, Allan V., Tami M. Videon, Mark F. Schmitz, and Diane Davis. 2003. Rethinking twins and environments: Possible social sources for assumed genetic influences in twin research. Journal of Health and Social Behaviour 44:111–129.CrossRefGoogle Scholar
  33. Ioannidis, John P. A. 2005. Why most published research findings are false. PLoS Medicine 28:e124.CrossRefGoogle Scholar
  34. Jæger, Mads M. 2012. The extended family and children’s educational success. American Sociological Review 77:903–922.CrossRefGoogle Scholar
  35. Kahn, Joan R., and Kay E. Anderson. 1992. Intergenerational patterns of teenage fertility. Demography 29:39–57.CrossRefGoogle Scholar
  36. Kimura, Motoo. 1958. On the change of population fitness by natural selection 2 3. Heredity 12:145–167.CrossRefGoogle Scholar
  37. Kirk, Katherine M., Simon P. Blomberg, David L. Duffy, Andrew C. Heath, Ian P. F. Owens, and Nick G. Martin. 2001. Natural selection and quantitative genetics of life-history traits in western women: A twin study. Evolution 55:423–435.CrossRefGoogle Scholar
  38. Kohler, Hans-Peter, and Joseph L. Rodgers. 2003. Education, fertility and heritability: Explaining a paradox. Offspring: Human Fertility Behavior in Biodemographic Perspective 46–90.Google Scholar
  39. Kohler, Hans-Peter, Joseph L. Rodgers, and Kaare Christensen. 1999. Is fertility behavior in our genes? Findings from a Danish twin study. Population and Development Review 25:253–288.CrossRefGoogle Scholar
  40. Kohler, Hans-Peter, Joseph L. Rodgers, and Kaare Christensen. 2002. Between nurture and nature: The shifting determinants of female fertility in Danish twin cohorts. Biodemography and Social Biology 49:218–248.CrossRefGoogle Scholar
  41. Kohler, Hans-Peter, Joseph L. Rodgers, Warren B. Miller, Axel Skytthe, and Kaare Christensen. 2006. Bio-social determinants of fertility. International Journal of Andrology 29:46–53.CrossRefGoogle Scholar
  42. Kohler, Hans-Peter, Jere R. Behrman, and Jason Schnittker. 2011. Social science methods for twins data: Integrating causality, endowments, and heritability. Biodemography and Social Biology 57:88–141.CrossRefGoogle Scholar
  43. Kosova, Gülüm, et al. 2012. Genome-wide association study identifies candidate genes for male fertility traits in humans. The American Journal of Human Genetics 90:950–961.CrossRefGoogle Scholar
  44. Landecker, Hannah, and Aaron Panofsky. 2013. From social structure to gene regulation, and back: A critical introduction to environmental epigenetics for sociology. Annual Review of Sociology 39:333–357.CrossRefGoogle Scholar
  45. Lawlor, Debbie, et al. 2008. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology. Statistics in Medicine 27:1133–1163.CrossRefGoogle Scholar
  46. Levine, Philippa, and Alison Bashford. Eds. 2010. Introduction: Eugenics and the modern world. In The Oxford handbook of the history of eugenics, eds. Alison Bashford and Philippa Levine, 3–26. Oxford: Oxford University Press.Google Scholar
  47. Liu, Yao-Zhong, et al. 2009. Genome-wide association analyses identify SPOCK as a key novel gene underlying age at menarche. PLoS Genetics 5:e1000420.CrossRefGoogle Scholar
  48. Lomniczi, Alejandro, Alberto Loche, Juan Manuel Castellano, Oline K. Ronnekleiv, Martha Bosch, Gabi Kaidar, J. Gabriel, Hollis Wright, Gerd P. Pfeifer, and Sergio R. Ojeda. 2013. Epigenetic control of female puberty. Nature Reviews Neuroscience 14:156.Google Scholar
  49. Maher, Brendan. 2008. Personal genomes: The case of the missing heritability. Nature 456:18–21.CrossRefGoogle Scholar
  50. Mandemakers, Jornt J., Melinda Mills, Nicola Barban, and Harold Snieder. 2014. Do genetic markers for infertility problems predict childlessness and completed fertility? Population Association of America Conference, May 1–3, 2014, Boston, USA.Google Scholar
  51. Mealey, Linda, and Nancy L. Segal. 1993. Heritable and environmental variables affect reproductionrelated behaviors, but not ultimate reproductive success. Personality and Individual Differences 14:783–794.CrossRefGoogle Scholar
  52. Miller, Warren B. 1992. Personality traits and developmental experiences as antecedents of childbearing motivation. Demography 29:265–285.CrossRefGoogle Scholar
  53. Miller, Warren B. 1994. Childbearing motivations, desires and intentions: A theoretical framework. Genetic, Social, and General Psychological Monographs 120:223–258.Google Scholar
  54. Miller, Warren B., and David J. Pasta. 1994. The psychology of child timing: A measurement instrument and a model. Journal of Applied Social Psychology 24:221–250.CrossRefGoogle Scholar
  55. Miller, Warren B., David E. Bard, David J. Pasta, and Joseph L. Rodgers. 2010. Biodemographic modelling of the links between fertility motivation and fertility outcomes in the NLSY79. Demography 47:393–414.CrossRefGoogle Scholar
  56. Mills, Melinda. 2011. Introducing survival and event history analysis . London: Sage Publications.Google Scholar
  57. Mills, Melinda, and Hans-Peter Blossfeld. 2005. Globalization, uncertainty and the early life course: A theoretical framework. In Globalization, uncertainty and youth in society, eds. H.-P. Blossfeld, E. Klijzing, M. Mills, and K. Kurz, 1–24. London: Routledge Advances in Sociology Series.Google Scholar
  58. Mills, Melinda, Ronald R. Rindfuss, Peter McDonald, and Egbert te Velde. 2011. Why do people postpone parenthood? Reasons and social policy incentives. Human Reproduction Update 17:848–860.CrossRefGoogle Scholar
  59. Milot, Emmanuel, Francine M. Mayer, Daniel H. Nussey, Mireille Boisvert, Fanie Pelletier, and Denis Réale. 2011. Evidence for evolution in response to natural selection in a contemporary human population. Proceedings of the National Academy of Sciences 108:17040–17045.Google Scholar
  60. Montgomery, Grant W., Krina T. Zondervan, and Dale R. Nyholt. 2014. The future for genetic studies in reproduction. Molecular Human Reproduction 20:1–14.CrossRefGoogle Scholar
  61. Murphy, Michael. 1999. Is the relationship between fertility of parents and children really weak? Biodemography and Social Biology 46:122–145.CrossRefGoogle Scholar
  62. Murphy, Michael, and Duolao Wang. 2001. Family-level continuities in childbearing in low-fertility societies. European Journal of Population 17:75–96.CrossRefGoogle Scholar
  63. Neiss, Michelle, David C. Rowe, and Joseph L. Rodgers. 2002. Does education mediate the relationship between IQ and age of first birth? A behavioural genetic analysis. Journal of Biosocial Science 34:259–276.CrossRefGoogle Scholar
  64. Ní Bhrolcháin, Máire, and Éva Beaujouan. 2012. Fertility postponement is largely due to rising educational enrolment. Population Studies 66:311–327.CrossRefGoogle Scholar
  65. Nisén, Jessica, Pekka Martikainen, Jaakko Kaprio, and Karri Silventoinen. 2013. Educational differences in completed fertility: A behavioral genetic study of Finnish male and female twins. Demography 50:1399–1420.CrossRefGoogle Scholar
  66. Nolte, Ilja M., McCaffery J. Michael, and Harold Snieder. 2010. Candidate gene and genome-wide association studies in behavioral medicine. In Handbook of behavioral medicine: Methods and applications, ed. A. Steptoe. New York: Springer.Google Scholar
  67. Painter, Jodie N., Jodie N. Painter, Carl A. Anderson, Dale R. Nyholt, Stuart Macgregor, Jianghai Lin, Sang Hong Lee, Ann Lambert, Zhen Z. Zhao, Fenella Roseman, Qun Guo, Scott D. Gordon, Leanne Wallace, Anjali K. Henders, Peter M. Visscher, Peter Kraft, Nicholas G. Martin, Andrew P. Morris, Susan A. Treloar, Stephen H. Kennedy, Stacey A. Missmer, Grant W. Montgomery, and Krina T. Zondervan. 2011. Genome-wide association study identifies a locus at 7 p15. 2 associated with endometriosis. Nature Genetics 43:51–54.CrossRefGoogle Scholar
  68. Pasta, David J., and Warren B. Miller. 2000. A heritability study of childbearing motivation. In Genetic Influences on Human Fertility and Sexuality, eds. Joseph Lee Rodgers, David C. Rowe, and Warren B. Miller, 107–120. New York: Springer.CrossRefGoogle Scholar
  69. Perry, John R. B., et al. 2013. A genome-wide association study of early menopause and the combined impact of identified variants. Human Molecular Genetics 22:1465–1472.CrossRefGoogle Scholar
  70. Pike, Alison, and Tina Kretschmer. 2009. Shared versus nonshared effects: Parenting and children’s adjustment. International Journal of Developmental Science 3:115–130.Google Scholar
  71. Plomin, Robert. 1994. Genetics and experience: The interplay between nature and nuture . Newbury Park: Sage Publications.Google Scholar
  72. Purcell, Shaun M., et al. 2009. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature 460:748–752.Google Scholar
  73. Rietveld, Cornelius A., et al. 2013a. GWAS of 126,559 individuals identifies genetic variants associated with educational attainment. Science 340:1467–1471.CrossRefGoogle Scholar
  74. Rietveld, Cornelius A., David Cesarini, Daniel J. Benjamin, Philipp D. Koellinger, Jan-Emmanuel De Neve, Henning Tiemeier, Magnus Johannesson, Patrik K. E. Magnusson, Nancy L. Pedersen, Robert F. Krueger, and Meike Bartels. 2013b. Molecular genetics and subjective well-being. Proceedings of the National Academy of Sciences 110:9692–9697.CrossRefGoogle Scholar
  75. Rodgers, Joseph L., and Hans-Peter Kohler . Eds. 2003. The biodemography of human reproduction and fertility . Dordrecht: Kluwer Academic Publishers.Google Scholar
  76. Rodgers, Joseph L., Hans-Peter Kohler, Kirsten O. Kyvik, and Kaare Christensen. 2001. Behavior genetic modeling of human fertility: Findings from a contemporary Danish twin study. Demography 38:29–42.CrossRefGoogle Scholar
  77. Rodgers, Joseph L., Hans-Peter Kohler, Matt McGue, Jere R. Behrman, Inge Petersen, Paul Bingley, and Kaare Christensen. 2008. Education and cognitive ability as direct, mediating, or spurious influences on female age at first birth: Behavior genetic models fit to Danish twin data. American Journal of Sociology 114 (Suppl): S202.CrossRefGoogle Scholar
  78. Shanahan, Michael J., and Scott M. Hofer. 2005. Social context in gene–environment interactions: Retrospect and prospect. Journals of Gerontology Series B 60:65–76.CrossRefGoogle Scholar
  79. Snieder, Harold, et al. 1998. Genes control cessation of a woman’s reproductive life: A twin study of hysterectomy and age at menopause. J Clin Endo Metab 83:1875–1880.Google Scholar
  80. Snieder, Harold, Xiaoling Wang, and Alex J. MacGregor. 2010. Twin methodology. In Encyclopedia of life sciences (ELS), ed. Alessandro Finazzi-Agrò. Chichester: John Wiley & Sons.Google Scholar
  81. Stearns, Stephen C., Sean G. Byars, Diddahally R. Govindaraju, and Douglas Ewbank. 2010. Measuring selection in contemporary human populations. Nature Reviews Genetics 11:611–622.CrossRefGoogle Scholar
  82. Steenhof, Liesbeth, and Aart C. Liefbroer. 2008. Intergenerational transmission of age at first birth in the Netherlands for birth cohorts born between 1935 and 1984: Evidence from municipal registers. Population Studies 62:69–84.CrossRefGoogle Scholar
  83. Stolk, Liesette, et al. 2009. Loci at chromosomes 13, 19 and 20 influences age at natural menopause. Nature Genetics 41:645–647.CrossRefGoogle Scholar
  84. Stolk, Liesette, et al. 2012. Meta-analyses identify 13 loci associated with age menopause and highlight DNA repair and immune pathways. Nature Genetics 44:260–268CrossRefGoogle Scholar
  85. Stover, John. 1998. Revising the proximate determinants of fertility framework: What have learned in the past 20 years? Studies in Family Planning 29:255–267.CrossRefGoogle Scholar
  86. Sulem, Patrick, et al. 2009. Genome-wide association study identifies sequence variants on 6q21 associated with age at menarche. Nature Genetics 41:734–738.CrossRefGoogle Scholar
  87. Thoday, John M., et al. 1970. The interrelation of genetics and the social sciences. Population Studies Suppl 49–54.Google Scholar
  88. Tropf, Felix C., Nicola Barban, Melinda Mills, Harold Snieder, and Jornt Mandemakers. 2015a. Genetic influence on age at first birth of female twins born in the UK, 1919–68, Population Studies. A Journal of Demography . doi:10.1080/00324728.2015.1056823Google Scholar
  89. Tropf, Felix C., Gert Stulp, Nicola Barban, Peter M. Visscher, Jian Yang, Harold Snieder, and Melinda C. Mills. 2015b. Human fertility, molecular genetics, and natural selection in modern societies. PloS one, 10(6):e0126821.CrossRefGoogle Scholar
  90. Turkheimer, Eric. 2000. Three laws of behavior genetics and what they mean. Current Directions in Psychological Science 9:160–164.CrossRefGoogle Scholar
  91. Udry, J. Richard. 1994. The nature of gender. Demography 31:561–73.CrossRefGoogle Scholar
  92. Udry, J. Richard. 1996. Biosocial models of low-fertility societies. Population and Development Review 22:325–336.CrossRefGoogle Scholar
  93. van de Kaa, J. Dirk. 1987. **Europe’s second demographic transition. Population Bulletin 42:1–59.Google Scholar
  94. van Doorn, Majka, Ioana Pop, and Maaarten H. J. Wolbers. 2011. Intergenerational transmission of education across European countries and cohorts. European Societies 13:93–117.CrossRefGoogle Scholar
  95. Vaupel, James W., et al. 1998. Biodemographic trajectories of longevity. Science 280:855–860.CrossRefGoogle Scholar
  96. Visscher, Peter M., William G. Hill, and Naomi R. Wray. 2008. Heritability in the genomics era—concepts and misconceptions. Nature Reviews Genetics 9:255–266.CrossRefGoogle Scholar
  97. Wachter, Kenneth W. 2003. Biodemography of fertility and family formation. In Offspring: Human fertility behavior in biodemographic perspective, eds. Rodolfo A. Bulatao and Kenneth W. Wachter, 1–17. Washington: National Academy of Sciences.Google Scholar
  98. Wachter, Kenneth W. 2008. Biodemography comes of age. Demographic Research 19:1501–1512.CrossRefGoogle Scholar
  99. Wachter, Kenneth W., and Caleb E. Finch . Eds. 1997. Between Zeus and the Salmon: The Biodemography of Longevity. Washington D.C.: National Research Council (US) Committee on Population.Google Scholar
  100. Wachter, Kenneth W., and Rodolfo A. Bulatao . Eds. 2003. Offspring: Human fertility behavior in biodemographic perspective. Washington D.C.: National Academy of Sciences.Google Scholar
  101. Wray, Naomi R., Jian Yang, Ben J. Hayes, Alkes L. Price, Michael E. Goddard, and Peter M. Visscher. 2013. Pitfalls of predicting complex traits from SNPs. Nature Reviews Genetics 14:507–515.CrossRefGoogle Scholar
  102. Yang, Jian, Beben Benyamin, Brian P. McEvoy, Scott Gordon, Anjali K. Henders, Dale R. Nyholt, Pamela A. Madden, Andrew C. Heath, Nicholas G. Martin, Grant W. Montgomery, Michael E. Goddard, and Peter M. Visscher. 2010. Common SNPs explain a large proportion of the heritability for human height. Nature Genetics 42:565–569.Google Scholar
  103. Yang, Jian, S. Hong Lee, Michael E. Goddard, and Peter M. Visscher. 2011. GCTA: A tool for genomewide complex trait analysis. The American Journal of Human Genetics 88:76–82.CrossRefGoogle Scholar
  104. Zhao, Han, and Zi-Jiang Chen. 2013. Genetic association studies in female reproduction: from candidategene approaches to genome-wide mapping. Molecular Human Reproduction 19:644–654.CrossRefGoogle Scholar
  105. Zietsch, Brendan P., Ralf Kuja-Halkola, Hasse Walum, and Karin J. H. Verweij. 2014. Perfect genetic correlation between number of offspring and grandoffspring in an industrialized human population. Proceedings of the National Academy of Sciences of the United States of America 111:1032–1036.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • Melinda C. Mills
    • 1
  • Felix C. Tropf
    • 2
  1. 1.Department of Sociology, Interuniversity Center for Social Science Theory and Methodology (ICS)University of GroningenGroningenThe Netherlands
  2. 2.Department of Sociology and Nuffield CollegeUniversity of OxfordOxfordUK

Personalised recommendations