Advertisement

Monat der Geburt und Demenz spät im Leben

  • Gabriele Doblhammer
  • Thomas Fritze
Part of the Kölner Zeitschrift für Soziologie und Sozialpsychologie book series (KZSS)

Zusammenfassung

Demenzen sind einer der häufigsten Erkrankungen im Alter mit hohen Kosten für die Gesellschaft. Während in der Demenzforschung vaskuläre Risikofaktoren im mittleren Lebensabschnitt im Vordergrund stehen, weitet dieser Beitrag den Blick auf die Lebensphase um den Zeitpunkt der Geburt aus. Wir stellen kurz die Theorien der metabolischen Programmierung des Fötus durch Umwelteinflüsse (fetal programming), des Missverhältnisses von Umwelteinflüssen während der Entwicklung des Fötus und der ersten Lebensjahre (thrifty phenotype) sowie der Lebenslaufepidemiologie vor. Unsere eigene empirische Studie beruht auf dem Geburtsmonat, einem exogenen Indikator früher Lebensumstände. Wir besprechen den theoretischen Hintergrund dieses Indikators sowie Forschungsergebnisse zu weiteren exogenen Indikatoren wie Hungersnöte, Epidemien und makro-ökonomische Fluktuationen. Auf Basis von Daten der größten gesetzlichen Krankenversicherung in Deutschland finden wir ein signifikant niedrigeres Demenzrisiko für die im Winter Geborenen. Wir diskutieren Vor – und Nachteile von Abrechnungsdaten für die Demenzforschung und präsentieren Forschungsergebnisse zu biologischen Mechanismen, die den von uns gefundenen Zusammenhang erklären können.

Schlüsselwörter

Frühe Lebensumstände Makro Faktoren Exogene Indikatoren Demenz Jahreszeit der Geburt 

Month of Birth and Dementia Late in Life

Abstract

Dementia is one of the most common, still incurable diseases of old age, with high costs for the patient, the family and the society. Scholars of dementia have identified important risk factors in mid-life but little attention has been devoted to the earliest period in life. This article extends the research about risk factors of dementia to the time around birth. We start by discussing the influential theories of fetal programming and of the thrifty phenotype, and briefly contrast these theories with life-course approaches and the theory of the accumulation of advantage or disadvantage over the life course. Our own empirical study is based on an exogenous indicator of the early life environment, namely the month of birth. We present the theoretical background of using this indicator and discuss others such as famines, epidemics, and macro-economic fluctuations. Using data from the largest public health insurer in Germany we explore the relationship between the month of birth and dementia and find that the winter-born have the lowest risk of developing dementia. We present the pros and cons of using claims data in the study of dementia and discuss research findings that may shed light on the biological mechanisms underlying our finding.

Keywords

Early life environment Macro effects Exogenous indicators Dementia Season of birth 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almond, Douglas. 2006. Is the 1918 influenza pandemic over? Long-term effects of in utero influenza exposure in the post-1940 U.S. population. Journal of Political Economy 114:672–712.CrossRefGoogle Scholar
  2. Almond, Douglas, and Bhashkar Mazumder. 2011. Health capital and the prenatal environment: The effect of Ramadan observance during pregnancy. American Economic Journal. Applied Economics 3:56–85.CrossRefGoogle Scholar
  3. Barker, David J. P., and Clive Osmond. 1986a. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. The Lancet 327:1077–1081.Google Scholar
  4. Barker, David J. P., and Clive Osmond. 1986b. Childhood respiratory infection and adult chronic bronchitis in England and Wales. British Medical Journal 293:127–1.CrossRefGoogle Scholar
  5. Barker, David J. P., and Clive Osmond. 1987. Death rates from stroke in England and Wales predicted from past maternal mortality. British Medical Journal 295:8–3.Google Scholar
  6. Barker, David J. P., Clive Osmond, and C. M. Law. 1989a. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. Journal of Epidemiology and Community Health 43:237–240.CrossRefGoogle Scholar
  7. Barker, David J. P., P. D. Winter, Clive Osmond, Barrie Margetts, and Shirley J. Simmonds. 1989b. Weight in infancy and death from ischaemic heart disease. Lancet 2:577–580.Google Scholar
  8. Barker, David J. P., Clive Osmond, and Jean Golding. 1990. Height and mortality in the counties of England and Wales. Annals of Human Biology 17:1–6.CrossRefGoogle Scholar
  9. Ben-Shlomo, Yoav, and Diana Kuh. 2002. A life course approach to chronic disease epidemiology: Conceptual models, empirical challenges and interdisciplinary perspectives. International Journal of Epidemiology 31:285–293.CrossRefGoogle Scholar
  10. Ben-Shlomo, Yoav, and George Davey Smith. 1991. Deprivation in infancy or in adult life: Which is more important for mortality risk? The Lancet 337:530–534.Google Scholar
  11. Bengtsson, Tommy, and Göran Broström. 2009. Do conditions in early life affect old-age mortality directly and indirectly? Evidence from 19th-century rural Sweden. Social Science & Medicine 68:1583–1590.Google Scholar
  12. Bengtsson, Tommy, and Martin Lindstrom. 2000. Childhood misery and disease in later life: the effects on mortality in old age of hazards experienced in early life, southern Sweden, 1760-1894. Population Studies 54:263–277.CrossRefGoogle Scholar
  13. Bengtsson, Tommy, and Martin Lindstrom. 2003. Airborne infectious diseases during infancy and mortality in later life in southern Sweden, 1766-1894. International Journal of Epidemiology 32:286–294.CrossRefGoogle Scholar
  14. Bickel, Horst. 2000. Demenzsyndrom und Alzheimer Krankheit: Eine Schätzung des Krankenbestandes und der jährlichen Neuerkrankungen in Deutschland. Das Gesundheitswesen 62:211–218.CrossRefGoogle Scholar
  15. Bloom-Feshbach, Kimberly, Lone Simonsen, Cécile Viboud, Kare Molbak, Mark A. Miller, Magnus Gottfredsson, and Viggo Andreasen. 2011. Natality decline and miscarriages associated with the 1918 influenza pandemic: the Scandinavian and United States experiences. The Journal of Infectious Diseases 204:1157–1164.CrossRefGoogle Scholar
  16. Bozzoli, Carlos, Angus Deaton, and Climent Quintana-Domeque. 2009. Adult height and childhood disease. Demography 46:647–669.Google Scholar
  17. Cameron, Noel, and Ellen W. Demerath. 2002. Critical periods in human growth and their relationship to diseases of aging. American Journal of Physical Anthropology 119:159–184.CrossRefGoogle Scholar
  18. Case, Anne, and Christina Paxson. 2009. Early life health and cognitive function in old age. American Economic Review: Papers & Proceedings 99:104–109.Google Scholar
  19. Chen, Edith, Gregory E. Miller, Michael S. Kobor, and Steve W. Cole. 2011. Maternal warmth buffers the effects of low early-life socioeconomic status on pro-inflammatory signaling in adulthood. Molecular Psychiatry 16:729–737.Google Scholar
  20. Cicchetti, Dante, and Sheree L. Toth. 2005. Child maltreatment. Annual Review of Clinical Psychology 1:409–438.CrossRefGoogle Scholar
  21. Cohen, Alan A, John Tillinghast, and Vladimir Canudas-Romo. 2010. No consistent effects of prenatal or neonatal exposure to Spanish flu on late-life mortality in 24 developed countries. Demographic Research 22:57–9.Google Scholar
  22. Cole, Steven W., Louise C. Hawkley, Jesusa M. Arevalo, and John T. Cacioppo. 2011. Transcript origin analysis identifies antigen-presenting cells as primary targets of socially regulated gene expression in leukocytes. Proceedings of the National Academy of Sciences of the United States of America 108:3080–3085.Google Scholar
  23. Costa, Dora L. 2000. Understanding the twentieth-century decline in chronic conditions among older men. Demography 37:53–72.CrossRefGoogle Scholar
  24. Crimmins, Eileen M., and Caleb E. Finch. 2006. Infection, inflammation, height, and longevity. Proceedings of the National Academy of Sciences of the United States of America 103:498–503.Google Scholar
  25. Cutler, David M., Grant Miller, and Douglas M. Norton. 2007. Evidence on early-life income and late-life health from America's Dust Bowl era. Proceedings of the National Academy of Sciences of the United States of America 104:13244–13249.Google Scholar
  26. Dannefer, Dale. 1987. Aging as intracohort differentiation: Accentuation, the Matthew effect, and the life course. Sociological Forum 2:211–236.CrossRefGoogle Scholar
  27. Dannefer, Dale. 2003. Cumulative advantage/disadvantage and the life course: Cross-fertilizing age and social science theory. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences 58:S327–337.CrossRefGoogle Scholar
  28. de Groot, Renate H., Aryeh D. Stein, Jelle Jolles, Martin P. van Boxtel, Gerard-Jan Blauw, Margot van de Bor, and Lambert H. Lumey. 2011. Prenatal famine exposure and cognition at age 59 years. International Journal of Epidemiology 40:327–337.CrossRefGoogle Scholar
  29. de Rooij, Susanne R., Hans Wouters, Julie E. Yonker, Rebecca C. Painter, and Tessa J. Roseboom, Rebecca C. Painter, and Tessa J. Roseboom. 2010. Prenatal undernutrition and cognitive function in late adulthood. Proceedings of the National Academy of Sciences of the United States of America 107:16881–16886.Google Scholar
  30. Deaner, Robert O., Aaron Lowen, and Stephen Cobley. 2013. Born at the wrong time: Selection bias in the NHL draft. PLoS One 8:e5775–3.CrossRefGoogle Scholar
  31. Deeg, Dorly J. H., Majogé J. G. van Vliet, Jan W. P. F. Kardaun, and Martijn Huisman, Jan W. P. F. Kardaun, and Martijn Huisman. 2013. Understanding the mortality decline at older ages. Improved life course or improved present period? Annual Review of Gerontology and Geriatrics 33:259–291.Google Scholar
  32. Derrick, V. P. A. 1927. Observations on (1) errors of age in the population statistics of England and Wales, and (2) the changes in mortality indicated by the national records. Journal of the Institute of Actuaries 58:117–159.Google Scholar
  33. Disanto, Giulio, Julia M. Morahan, Melanie V. Lacey, Gabriele C. DeLuca, Gavin Giovannoni, George C. Ebers, and Sreeram V. Ramagopalan. 2012. Seasonal distribution of psychiatric births in England. PLoS One 7:e3486–6.Google Scholar
  34. Doblhammer, Gabriele. 2004. The late life legacy of very early life . Berlin: Springer.CrossRefGoogle Scholar
  35. Doblhammer, Gabriele, and James W. Vaupel. 2001. Lifespan depends on month of birth. Proceedings of the National Academy of Sciences of the United States of America 98:2934–2939.Google Scholar
  36. Doblhammer, Gabriele, Rembrandt Scholz, and Heiner Maier. 2005. Month of birth and survival to age 105+: Evidence from the age validation study of German semi-supercentenarians. Experimental Gerontology 40:829–835.CrossRefGoogle Scholar
  37. Doblhammer, Gabriele, Anne Schulz, Juliane Steinberg, and Uta Ziegler. 2012. Demografie der Demenz . Bern: Verlag Hans Huber, Hofgrefe AG. Doblhammer, Gabriele, Gerard J. van den Berg, and Thomas Fritze. 2013a. Economic conditions at the time of birth and cognitive abilities late in life: Evidence from ten European countries. PLoS One 8:e7491–5.Google Scholar
  38. Doblhammer, Gabriele, Gerard J. van den Berg, and Lambert H. Lumey. 2013b. A re-analysis of the long-term effects on life expectancy of the Great Finnish Famine of 1866-68. Population Studies 67: 309–322.CrossRefGoogle Scholar
  39. Doblhammer, Gabriele, Anne Fink, Thomas Fritze, and Christian Günster. 2013c. The demography and epidemiology of dementia. Geriatric Mental Health Care 1:29–33.CrossRefGoogle Scholar
  40. Doblhammer, Gabriele, Anne Fink, and Thomas Fritze. 20 15. Short-term trends in dementia prevalence in Germany between the years 2007 and 2009. Alzheimer's & Demenia 11:291–299Google Scholar
  41. Drury, Stacy S., Katherine Theall, Mary M. Gleason, Anna T. Smyke, Immaculata De Vivo, Jocelyn Y. Wong, Nathan A. Fox, Charles H. Zeanah, and Charles A. Nelson. 2012. Telomere length and early severe social deprivation: Linking early adversity and cellular aging. Molecular Psychiatry 17:719–727.CrossRefGoogle Scholar
  42. Dysken, Maurice W., Michael Kuskowski, Stacy S. Skare, Uros Roessmann, Avertano Noronha, and William H. Frey. 1991. Seasonal distribution of births in Alzheimer's disease. International Psychogeriatrics 3:53–58.CrossRefGoogle Scholar
  43. Elford, Jonathan, A. G. Shaper, and Peter Whincup. 1992. Early life experience and cardiovascular disease-ecological studies. Journal of Epidemiology and Community Health 46:1–8.CrossRefGoogle Scholar
  44. Eriksson, Johan G., Tom Forsen, Jaako Tuomilehto, P. D. Winter, Clive Osmond, and David J. P. Barker. 1999. Catch-up growth in childhood and death from coronary heart disease: Longitudinal study. British Medical Journal 318:427–431.CrossRefGoogle Scholar
  45. Eriksson, Johan G., Tom Forsen, Jaako Tuomilehto, Clive Osmond, and David J. P. Barker. 2000. Fetal and childhood growth and hypertension in adult life. Hypertension 36:790–794.CrossRefGoogle Scholar
  46. Eriksson, Johan G., Tom Forsen, Jaako Tuomilehto, Clive Osmond, and David J. P. Barker. 2001. Early growth and coronary heart disease in later life: Longitudinal study. British Medical Journal 322:949–953.Google Scholar
  47. Eysenck, Hans J., and David K. B. Nias. 1982. Astrology: Science or superstition? London: Temple Smith.Google Scholar
  48. Ferraro, Kenneth F., and Tetyana P. Shippee. 2009. Aging and cumulative inequality: How does inequality get under the skin? Gerontologist 49:333–343.CrossRefGoogle Scholar
  49. Finch, Caleb E., and Eileen M. Crimmins. 2004. Inflammatory exposure and historical changes in human life-spans. Science 305:1736–1739.CrossRefGoogle Scholar
  50. Forrest, Christopher B., and Anne W. Riley. 2004. Childhood origins of adult health: A basis for life-course health policy. Health Affairs (Project Hope) 23:155–164.CrossRefGoogle Scholar
  51. Forsdahl, Anders. 1973. Momenter til belysning ar den høye dødelighet i Finnmark fylke. Tidsskrift for den Norske Lægeforening 93:661–667.Google Scholar
  52. Forsen, Tom, Johan G. Eriksson, Jaako Tuomilehto, Clive Osmond, and David J. P. Barker. 1999. Growth in utero and during childhood among women who develop coronary heart disease: Longitudinal study. British Medical Journal 319:1403–1407.CrossRefGoogle Scholar
  53. Forsen, Tom, Johan G. Eriksson, Jaako Tuomilehto, Antti Reunanen, Clive Osmond, and David J. P. Barker. 2000. The fetal and childhood growth of persons who develop type 2 diabetes. Annals of Internal Medicine 133:176–182.CrossRefGoogle Scholar
  54. Fratiglioni, Laura, Anders Ahlbom, Matti Viitanen, and Bengt Winblad. 1993. Risk factors for late-onset Alzheimer's disease: A population-based, case-control study. Annals of Neurology 33:258–266.Google Scholar
  55. Fritze, Thomas, Gabriele Doblhammer, and Gerard J. van den Berg. 2014. Can individual conditions during childhood mediate or moderate the long-term cognitive effects of poor economic environments at birth? Social Science & Medicine . doi:10.1016/j.socscimed.2014.07.011.Google Scholar
  56. Gagnon, Alain, and Ryan Mazan. 2009. Does exposure to infectious diseases in infancy affect old-age mortality? Evidence from a pre-industrial population. Social Science & Medicine 68:1609–1616.CrossRefGoogle Scholar
  57. Gardener, Hannah, Xiang Gao, Honglei Chen, Michael A. Schwarzschild, Donna Spiegelman, and Alberto Ascherio. 2010. Prenatal and early life factors and risk of Parkinson's disease. Movement Disorders 25:1560–1567.CrossRefGoogle Scholar
  58. Geyer, Siegfried, and Richard Peter. 2000. Income, occupational position, qualification and health inequalities-Competing risks? (Comparing indicators of social status). Journal of Epidemiology and Community Health 54:299–305.CrossRefGoogle Scholar
  59. Gluckman, Peter D., and Mark A. Hanson. 2004. Living with the past: Evolution, development, and patterns of disease. Science 305:1733–1736.CrossRefGoogle Scholar
  60. Gorelick, Philip B. 2004. Risk factors for vascular dementia and Alzheimer disease. Stroke 35:2620–2622.CrossRefGoogle Scholar
  61. Gørgens, Tue, Xin Meng, and Rhema Vaithianathan. 2012. Stunting and selection effects of famine: A case study of the Great Chinese Famine. Journal of Development Economics 97:99–111.CrossRefGoogle Scholar
  62. Hales, C. Nicholas, and David J. P. Barker. 1992. Type 2 (non-insulin-dependent) diabetes mellitus: The thrifty phenotype hypothesis. Diabetologia 35:595–601.Google Scholar
  63. Hales, C. Nicholas, and David J. P. Barker. 2001. The thrifty phenotype hypothesis. British Medical Bulletin 60:5–20.Google Scholar
  64. Henderson, A. S., Ailsa E. Korten, Anthony F. Jorm, Elizabeth McCusker, Helen Creasey, and Gerald A. Broe. 1991. Season of birth for Alzheimer's disease in the Southern Hemisphere. Psychological Medicine 21:371–374.Google Scholar
  65. Holding, Penny A., and Robert W. Snow. 2001. Impact of Plasmodium falciparum malaria on performance and learning: Review of the evidence. The American Journal of Tropical Medicine and Hygiene 64:68–75.Google Scholar
  66. Holliday, Malcolm A. 1986. Body composition and energy need during growth. In Human growth: A comprehensive treatise , eds. Frank Falkner and J. M. Tanner, 117-139. New York: Plenum.Google Scholar
  67. Huntington, Ellsworth. 1938. Season of birth: Its relation to human abilities . New York: J. Wiley & Sons, Inc.Google Scholar
  68. Huxley, Rachel, Andrew Neil, and Rory Collins. 2002. Unravelling the fetal origins hypothesis: Is there really an inverse association between birthweight and subsequent blood pressure? Lancet 360:659–665.Google Scholar
  69. Jakob, Anke, Anja Busse, Steffi G. Riedel-Heller, Micaela Pavlicek, and Matthias C. Angermeyer. 2002. Prävalenz und Inzidenz von Demenzerkrankungen in Alten- und Altenpflegeheimen im Vergleich mit Privathaushalten. Zeitschrift Fur Gerontologie Und Geriatrie 35:474–481.CrossRefGoogle Scholar
  70. Joseph, K. S., and Michael S. Kramer. 1996. Review of the evidence on fetal and early childhood antecedents of adult chronic disease. Epidemiologic Reviews 18:158–174.CrossRefGoogle Scholar
  71. Kananen, Laura, Ida Surakka, Sami Pirkola, Jaana Suvisaari, Jouko Lonnqvist, Leena Peltonen, Samuli Ripatti, and Iiris Hovatta. 2010. Childhood adversities are associated with shorter telomere length at adult age both in individuals with an anxiety disorder and controls. PLoS One 5:e1082–6.CrossRefGoogle Scholar
  72. Kannisto, Väinö, Kaare Christensen, and James W. Vaupel. 1997. No increased mortality in later life for cohorts born during famine. American Journal of Epidemiology 145:987–994.CrossRefGoogle Scholar
  73. Kermack, William O., Anderson G. McKendrick, and Peter L. McKinlay. 1934. Death-rates in Great Britain and Sweden some general regularities and their significance. The Lancet 223:698–703.CrossRefGoogle Scholar
  74. Koch, Horst J., and David Fischer-Barnicol. 2005. Seasonality of births in elderly patients with dementia or depression. Chronobiology International 22:391–392.CrossRefGoogle Scholar
  75. Kramer, Michael S. 2000. Invited commentary: Association between restricted fetal growth and adult chronic disease: Is it causal? Is it important? American Journal of Epidemiology 152:605–608.CrossRefGoogle Scholar
  76. Kuzawa, Christopher W. 1998. Adipose tissue in human infancy and childhood: An evolutionary perspective. American Yearbook of Physical Anthropology 41:177–209.Google Scholar
  77. Kuzawa, Christopher W., and E. A. Quinn. 2009. Developmental origins of adult function and health: Evolutionary hypotheses. Annual Review of Anthropology 38:131–147.CrossRefGoogle Scholar
  78. Landrigan, Philip J., Babasaheb Sonawane, Robert N. Butler, Leonardo Trasande, Richard Callan, and Daniel Droller. 2005. Early environmental origins of neurodegenerative disease in later life. Environmental Health Perspectives 113:1230–1233.CrossRefGoogle Scholar
  79. Larson, Eric B., Kristine Yaffe, and Kenneth M. Langa. 2013. New insights into the dementia epidemic. The New England Journal of Medicine 369:2275–2277.CrossRefGoogle Scholar
  80. Leicht, Hanna, Sven Heinrich, Dirk Heider, Cadja Bachmann, Horst Bickel, Hendrik van den Bussche, Angela Fuchs, Melanie Luppa, Wolfgang Maier, Edelgard Mösch, Michael Pentzek, Steffi G. Riedel-Heller, Franziska Tebarth, Jochen Werle, Siegfried Weyerer, Birgitt Wiese, Thomas Zimmermann, Hans-Helmut König, and for the AgeCoDe study group. 2011. Net costs of dementia by disease stage. Acta Psychiatrica Scandinavica 124:384–395.Google Scholar
  81. Leon, David A. 2004. Biological theories, evidence, and epidemiology. International Journal of Epidemiology 33:1167–1171.CrossRefGoogle Scholar
  82. Leon, David A., and George Davey Smith. 2000. Infant mortality, stomach cancer, stroke, and coronary heart disease: Ecological analysis. British Medical Journal 320:1705–1706.CrossRefGoogle Scholar
  83. Leon, David A., Malin Johansson, and Finn Rasmussen. 2000. Gestational age and growth rate of fetal mass are inversely associated with systolic blood pressure in young adults: An epidemiologic study of 165,136 Swedish men aged 18 years. American Journal of Epidemiology 152:597–604.CrossRefGoogle Scholar
  84. Lindeboom, Maarten, France Portrait, and Gerard J. van den Berg. 2010. Long-run effects on longevity of a nutritional shock early in life: The Dutch Potato Famine of 1846-1847. Journal of Health Economics 29:617–629.Google Scholar
  85. Lumey, Lambert H., Aryeh D. Stein, and Ezra Susser. 2011. Prenatal famine and adult health. Annual Review of Public Health 32:237–262.CrossRefGoogle Scholar
  86. Maheswaran, Ravi, David P. Strachan, Brian Dodgeon, and Nicola G. Best. 2002. A population-based case-control study for examining early life influences on geographical variation in adult mortality in England and Wales using stomach cancer and stroke as examples. International Journal of Epidemiology 31:375–382.CrossRefGoogle Scholar
  87. Martin Ruiz, Carmen, Heather O. Dickinson, Barbara Keys, Elise Rowan, Rose Anne Kenny, and Thomas Von Zglinicki. 2006. Telomere length predicts poststroke mortality, dementia, and cognitive decline. Annals of Neurology 60:174–180.Google Scholar
  88. Mattock, Christopher, Michael Marmot, and Gerald Stern. 1988. Could Parkinson's disease follow intrauterine influenza?: A speculative hypothesis. Journal of Neurology, Neurosurgery & Psychiatry 51:753–756.CrossRefGoogle Scholar
  89. Mazumder, Bhashkar, Douglas Almond, K. Park, Eileen M. Crimmins, and Caleb E. Finch. 2010. Lingering prenatal effects of the 1918 influenza pandemic on cardiovascular disease. Journal of Developmental Origins of Health and Disease 1:26–34.CrossRefGoogle Scholar
  90. McDade, Thomas W., Julienne Rutherford, Linda Adair, and Christopher W. Kuzawa. 2010. Early origins of inflammation: Microbial exposures in infancy predict lower levels of C-reactive protein in adulthood. Proceedings of The Royal Society B: Biological Sciences 277:1129–1137.Google Scholar
  91. Miller, Diane B., and James P. O’Callaghan. 2008. Do early-life insults contribute to the late-life development of Parkinson and Alzheimer diseases? Metabolism 57:44–49.CrossRefGoogle Scholar
  92. Miller, Gregory E., and Edith Chen. 2010. Harsh family climate in early life presages the emergence of a proinflammatory phenotype in adolescence. Psychological Science 21:848–856.Google Scholar
  93. Miller, Gregory E., Edith Chen, Alexandra K. Fok, Hope Walker, Alvin Lim, Erin F. Nicholls, Steve Cole, and Michael S. Kobor. 2009. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proceedings of the National Academy of Sciences of the United States of America 106:14716–14721.Google Scholar
  94. Miura, T. 1987. Seasonality of birth . The Hague: SPB Academic Publishing.Google Scholar
  95. Morozink, Jennifer A., Elliot M. Friedman, Christopher L. Coe, and Carol D. Ryff. 2010. Socioeconomic and psychosocial predictors of interleukin-6 in the MIDUS national sample. Health Psychology 29:626–635.CrossRefGoogle Scholar
  96. Myrskyla, Mikko 2010a. The relative effects of shocks in early- and later-life conditions on mortality. Population and Development Review 36:803–829.CrossRefGoogle Scholar
  97. Myrskyla, Mikko 2010b. The effects of shocks in early life mortality on later life expectancy and mortality compression: A cohort analysis. Demographic Research 22:289–320.CrossRefGoogle Scholar
  98. Myrskyla, Mikko, Neil K. Mehta, and Virginia W. Chang. 2013. Early life exposure to the 1918 influenza pandemic and old-age mortality by cause of death. American Journal of Public Health 103:e83–90.CrossRefGoogle Scholar
  99. O’Donovan, Aoife, Elissa Epel, Jue Lin, Owen Wolkowitz, Beth Cohen, Shira Maguen, Thomas Metzler, Maryann Lenoci, Elizabeth Blackburn, and Thomas C. Neylan. 2011. Childhood trauma associated with short leukocyte telomere length in posttraumatic stress disorder. Biological Psychiatry 70:465–471.Google Scholar
  100. Ó Gráda, Cormac. 2009. Famine: A short history . Princeton: Princeton University Press.Google Scholar
  101. O’Rand, Angela M. 1996. The precious and the precocious: Understanding cumulative disadvantage and cumulative advantage over the life course. Gerontologist 36:230–238.Google Scholar
  102. O’Rand, Angela M. 2003. Cumulative advantage theory in life course research. In Annual review of gerontology and geriatrics: Focus on economic outcomes in later life , eds. S. Crystal and D. F. Shea, 14-30. New York: Springer.Google Scholar
  103. Osmond, Clive, David J. P. Barker, and Jo M. Slattery. 1990. Risk of death from cardiovascular disease and chronic bronchitis determined by place of birth in England and Wales. Journal of Epidemiology and Community Health 44:139–141.CrossRefGoogle Scholar
  104. Painter, Rebecca C., Tessa J. Roseboom, and Otto P. Bleker. 2005. Prenatal exposure to the Dutch famine and disease in later life: An overview. Reproductive Toxicology 20:345–352.CrossRefGoogle Scholar
  105. Philpot, Michael, Michelle Rottenstein, Alistair Burns, and Geoffrey Der. 1989. Season of birth in Alzheimer's disease. The British Journal of Psychiatry 155:662–666.Google Scholar
  106. Pitkanen, Kari J., and James H. Mielke. 1993. Age and sex differentials in mortality during two nineteenth century population crises. European Journal of Population 9:1–32.CrossRefGoogle Scholar
  107. Prince, Martin, Daisy Acosta, Cleusa P. Ferri, Mariella Guerra, Yueqin Huang, Juan J. Llibre, Aquiles Salas, Ana Luisa Sosa, Joseph D. Williams, Michael E. Dewey, Isaac Acosta, Amuthavalli T. Jotheeswaran, and Zhaorui Liu. 2012. Dementia incidence and mortality in middle-income countries, and associations with indicators of cognitive reserve: A 10/66 Dementia Research Group populationbased cohort study. Lancet 380:50–58.CrossRefGoogle Scholar
  108. Prince, Martin, Renata Bryce, Emiliano Albanese, Anders Wimo, Wagner Ribeiro, and Cleusa P. Ferri. 2013. The global prevalence of dementia: A systematic review and metaanalysis. Alzheimer's & Dementia 9:63-75 e6–2.Google Scholar
  109. Pringle, Dennis G. 1998. Hypothesized foetal and early life influences on adult heart disease mortality: An ecological analysis of data for the Republic of Ireland. Social Science & Medicine 46:683–693.CrossRefGoogle Scholar
  110. Procopio, Marco, and Paul K. Marriott. 1998. Seasonality of birth in epilepsy: A Danish study. Acta Neurologica Scandinavica 98:297–301.Google Scholar
  111. Ptok, Ursula, Andreas Papassotiropoulos, Wolfgang Maier, and Reinhard Heun. 2001. Seasonal distribution of births in patients with Alzheimer's disease and elderly depressive patients. European Psychiatry 16:157–161.CrossRefGoogle Scholar
  112. Rufer, Nathalie, Tim H. Brümmendorf, Steen Kolvraa, Claus Bischoff, Kaare Christensen, Louis Wadsworth, Michael Schulzer, and Peter M. Lansdorp. 1999. Telomere fluorescence measurements in granulocytes and T lymphocyte subsets point to a high turnover of hematopoietic stem cells and memory T cells in early childhood. The Journal of Experimental Medicine 190:157–167.CrossRefGoogle Scholar
  113. Sadovnick, A. Dessa, and Irene M. Yee. 1994. Season of birth in multiple sclerosis. Acta Neurologica Scandinavica 89:190–191.Google Scholar
  114. Salemi, Giuseppe, Paolo Ragonese, Paolo Aridon, Arturo Reggio, A. Nicoletti, Daniela Buffa, Silvia Conte, and Giovanni Savettieri. 2000. Is season of birth associated with multiple sclerosis? Acta Neurologica Scandinavica 101:381–383.CrossRefGoogle Scholar
  115. Schneider, Julie A., Zoe Arvanitakis, Woo Y. Bang, and David A. Bennett. 2007. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 69:2197–2204.CrossRefGoogle Scholar
  116. Schulz, Anne, and Gabriele Doblhammer. 2012. Aktueller und zukünftiger Krankenbestand von Demenz in Deutschland auf Basis der Routinedaten der AOK. In Versorgungs-Report 2012: Schwerpunkt: Gesundheit im Alter , eds. Christian Günster, J Klose, and N. Schmacke. Stuttgart: Schattauer.Google Scholar
  117. Singhal, Atul, and Alan Lucas. 2004. Early origins of cardiovascular disease: Is there a unifying hypothesis? Lancet 363:1642–1645.Google Scholar
  118. Snowdon, David A., Susan J. Kemper, James A. Mortimer, Lydia H. Greiner, David R. Wekstein, and William R. Markesbery. 1996. Linguistic ability in early life and cognitive function and Alzheimer's disease in late life. JAMA: The Journal of the American Medical Association 275:528–532.Google Scholar
  119. Snowdon, David A., Lydia H. Greiner, and William R. Markesbery. 2000. Linguistic ability in early life and the neuropathology of Alzheimer's disease and cerebrovascular disease. Findings from the Nun Study. Annals of the New York Academy of Sciences 903:34–38.CrossRefGoogle Scholar
  120. Song, Shige 2009. Does famine have a long-term effect on cohort mortality? Evidence from the 1959-1961 great leap forward famine in China. Journal of Biosocial Science 41:469–491.CrossRefGoogle Scholar
  121. Stein, Aryeh D., Anita C. Ravelli, and Lambert H. Lumey. 1995. Famine, third-trimester pregnancy weight gain, and intrauterine growth: The Dutch famine birth cohort study. Human Biology 67:135–150.Google Scholar
  122. Taubenberger, Jeffery K., and David M. Morens. 2006. 1918 Influenza: the mother of all pandemics. Emerging Infectious Diseases 12:15–22.Google Scholar
  123. Thurner, Stefan, Peter Klimek, Michael Szell, Georg Duftschmid, Gottfried Endel, Alexandra Kautzky-Willer, and David C. Kasper. 2013. Quantification of excess risk for diabetes for those born in times of hunger, in an entire population of a nation, across a century. Proceedings of the National Academy of Sciences of the United States of America 110:4703–4707.Google Scholar
  124. Tyrka, Audrey R., Margaret C. Wyche, Megan M. Kelly, Lawrence H. Price, and Linda L. Carpenter. 2009. Childhood maltreatment and adult personality disorder symptoms: Influence of maltreatment type. Psychiatry Research 165:281–287.CrossRefGoogle Scholar
  125. Ueda, Peter, Anna-Karin Edstedt Bonamy, Fredrik Granath, and Sven Cnattingius. 2013. Month of birth and mortality in Sweden: A nation-wide population-based cohort study. PLoS One 8:e5642–5Google Scholar
  126. van Abeelen, Annet F., Marjolein V. Veenendaal, Rebecca C. Painter, Susanne R. de Rooij, Marcel G. Dijkgraaf, Patrick M. Bossuyt, Sjoerd G. Elias, Diederick E. Grobbee, Cuno S. Uiterwaal, and Tessa J. Roseboom, Cuno S. Uiterwaal, and Tessa J. Roseboom. 2012. Survival effects of prenatal famine exposure. The American Journal of Clinical Nutrition 95:179–183.Google Scholar
  127. van den Berg, Gerard J., Maarten Lindeboom, and France Portrait. 2006. Economic conditions early in life and individual mortality. American Economic Review 96:290–302.Google Scholar
  128. van den Berg, Gerard J., Dorly J. H. Deeg, Maarten Lindeboom and France Portrait, Maarten Lindeboom and France Portrait. 2010. The role of early-life conditions in the cognitive decline due to adverse events later in life. The Economic Journal 120:F411–F428.Google Scholar
  129. van den Berg, Gerard J., Gabriele Doblhammer-Reiter, and Kaare Christensen. 2011. Being born under adverse economic conditions leads to a higher cardiovascular mortality rate later in life: Evidence based on individuals born at different stages of the business cycle. Demography 48:507–530.Google Scholar
  130. Vezina, Hélène, Louis Houde, Hélène Charbonneau, Micheline Beaudry, Andrée Cholette, Nicolas Daoud, Jean Mathieu, Yves Robitaille, Francine Veilleux, and Denis Gauvreau. 1996. Season of birth and Alzheimer's disease: A population-based study in Saguenay-Lac-St-Jean/Quebec (IMAGE Project). Psychological Medicine 26:143–149.CrossRefGoogle Scholar
  131. Vitiello, Benedetto, James L. Hill, Susan E. Molchan, Rick A. Martinez, Heidi J. Martinson, and Trey Sunderland. 1991. Lack of seasonal variation in the births of patients with dementia of the Alzheimer type. Psychiatry Research 39:21–24.CrossRefGoogle Scholar
  132. Wells, Jonathan C. 2003. The thrifty phenotype hypothesis: Thrifty offspring or thrifty mother? Journal of Theoretical Biology 221:143–161.CrossRefGoogle Scholar
  133. Weyerer, Siegfried 2005. Altersdemenz. G esundheitsberichterstattung des Bundes Heft 28. Berlin: Robert Koch-Institut.Google Scholar
  134. Whitmer, Rachel A., Stephen Sidney, Joseph Selby, S. Claiborne Johnston, and Kristine Yaffe . 2005. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology 64:277–281.Google Scholar
  135. Wiberg, Margaretha, and Donald I. Templer. 1994. Season of birth in multiple sclerosis in Sweden: Replication of Denmark findings. Journal of Orthomolecular Medicine 9:71–71.Google Scholar
  136. Willer, Cristen J., David A. Dyment, A. Dessa Sadovnick, Peter M. Rothwell, T. Jock Murray, George C. Ebers, and Group Canadian Collaborative Study. 2005. Timing of birth and risk of multiple sclerosis: Population based study. British Medical Journal 330:12–0.Google Scholar
  137. Zhang, Tie Y., Rose Bagot, Carine Parent, Cathy Nesbitt, Timothy W. Bredy, Christian Caldji, Eric Fish, Hymie Anisman, Moshe Szyf, and Michael J. Meaney. 2006. Maternal programming of defensive responses through sustained effects on gene expression. Biological Psychology 73:72–89.CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • Gabriele Doblhammer
    • 1
  • Thomas Fritze
    • 2
  1. 1.Institute for Sociology and DemographyUniversity of RostockRostockGermany
  2. 2.Deutschen Zentrum für Neurodegenerative ErkrankungenStandort Rostock/GreifswaldRostockGermany

Personalised recommendations