The Cognitive and Practical Relevance of Technological Visions

Part of the Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society book series (TEWG)


For human beings, the future is never vacuous but an open space filled with various expectations, either in form of hopes or fears. These expectations fulfill an important function because they serve as a reminder that the world does not have to be as it is—that there are other possible (future) worlds. More specifically, utopian dreams have always stimulated human actions with the aim to change the present, the existing world.


Technological Progress Synthetic Biology Precautionary Principle Cognitive Enhancement Human Enhancement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahvenharju, S., Halonen, M., Uusitalo, S., Launis, V., & Hjelt, M. (2006). Comparative analysis of opinions produced by National Ethics Councils. Helsinki, Finland: Gaia Group Ltd.Google Scholar
  2. Appadurai, A. (1996). Modernity at large: Cultural dimensions of globalization. Minneapolis, MN: University of Minnesota Press.Google Scholar
  3. Barben, D., Fisher, E., Selin, C., & Guston, D. (2008). Anticipatory governance of nanotechnology, foresight, engagement, and integration. In J. Hackett, O. Amsterdamska, M. E. Lynch, & J. Wajcman (Eds.), The handbook of science and technology studies (pp. 979–1000). Cambridge, MA: MIT Press.Google Scholar
  4. Bennett, I., & Sarewitz, D. (2006). Too little, too late? Research policies on the societal implications of nanotechnology in the United States. Science as Culture, 15 (4), 309–325.Google Scholar
  5. Biegelbauer, P., & Hansen, J. (2011). Democratic theory and citizen participation: Democracy models in the evaluation of public participation in science and technology. Science and Public Policy, 38 (8), 589–597.Google Scholar
  6. Bijker, W., Bal, R., & Hendriks, R. (2009). The paradox of scientific authority: The role of scientific advice in democracies. Cambridge, MA: MIT Press.Google Scholar
  7. Bostrom, N., & Sandberg, A. (2009). Cognitive enhancement: Methods, ethics, regulatory challenges. Science and Engineering Ethics, 15 (3), 311–341.Google Scholar
  8. Bowman, D. M., & Hodge, G. A. (2007). Nanotechnology and public interest dialogue: Some international observations. Bulletin of Science, Technology & Society, 27 (April), 118–132.Google Scholar
  9. Brown, N., & Michael, M. (2003). A sociology of expectations: Retrospecting prospects and prospecting retrospects. Technology Analysis and Strategic Managment, 15 (1), 3–18.Google Scholar
  10. Buchanan, A. (2011). Beyond humanity? The ethics of biomedical enhancement. Oxford, England: Oxford University Press.CrossRefGoogle Scholar
  11. Burk, D. L., & Lemley, M. A. (2002). Is patent law technology-specific? Berkeley Technology Law Journal, 17 (4), 1155–1206.Google Scholar
  12. Christidou, V., Dimopoulos, K., & Kouladis, V. (2004). Constructing social representations of science and technology: The role of metaphors in the press and popular scientific disciplines. Public Understanding of Science, 13 (4), 347–362.Google Scholar
  13. Coenen, C. (2008). Konvergierende Technologien und Wissenschaften. Der Stand der Debatte und politischen Aktivitäten zu “Converging Technologies.” Büro für Technikfolgen- Abschätzung beim Deutschen Bundestag. Hintergrundpapier Nr.16, March 2008. Available at:
  14. Coenen, C., Schuijff, M., Smits, M., Klaassen, P., Hennen, L., Rader, M., & Wolbring, G. (2009). Human enhancement study. European Parliament, DG Internal Policies STOA, Brussels. Available at:
  15. Collins, H., & Evans, R. (2007). Rethinking Expertise. Chicago, IL: The University of Chicago Press.CrossRefGoogle Scholar
  16. Douglas, C., & Stemerding, D. (2013). Governing synthetic biology for global health through responsible research and innovation. Systems and Synthetic Biology, 7 (3), 139–150.Google Scholar
  17. Drengson, A. (2010). Four philosophies of technology. In C. Hanks (Ed.), Technology and values (pp. 26–38). Malden, MA: Wiley-Blackwell.Google Scholar
  18. Dryzek, J. (2010). Foundations and frontiers of deliberative governance. Oxford, England: Oxford University Press.CrossRefGoogle Scholar
  19. Faber, B. (2006). Popularizing nanoscience: The public rhetoric of nanotechnology, 1986–1999. Technical Communication Quarterly, 15 (2), 141–169.Google Scholar
  20. Ferrari, A., Coenen, C., & Grunwald, A. (2012). Visions and ethics in current discourse on human enhancement. Nanoethics, 6 (3), 215–229.Google Scholar
  21. Fisher, E. (2005). Lessons learned from ELSI program: Planning societal implications research for the national nanotechnology program. Technology in Society, 27 (3), 321–328.Google Scholar
  22. Fuchs, M. (2005), Nationale Ethikräte. Hintergründe, Funktionen und Arbeitsweisen im Vergleich. Berlin, Germany: Nationaler Ethikrat.Google Scholar
  23. Fukuyama, F. (2002). Our posthuman future: Consequences of the biotechnology revolution. New York, NY: Picador.Google Scholar
  24. Fuller, S. (2012a). Humanity 2.0: What it means to be human past, present and future. New York, NY: Palgrave Macmillan.Google Scholar
  25. Fuller, S. (2012b). Precautionary and proactionary as the new right and the new left of the twenty-first century ideological spectrum. International Journal of Politics, Culture, and Society, 25 (4), 157–174.Google Scholar
  26. Fuller, S. (2013). Preparing for life in humanity 2.0. New York, NY: Palgrave Macmillan.Google Scholar
  27. Fuller, S., & Lipinska, V. (2014). The proactionary imperative. A foundation for transhumanism. New York, NY: Palgrave Macmillan.Google Scholar
  28. Giddens, A. (1998). Risk society: The context of British politics. In J. Franklin (Ed.), The politics of risk society (pp. 23–35). Cambridge, England: Polity Press.Google Scholar
  29. Göran, H. (2008): European values—and others, Europe’s shared values: Towards an ever-closer union? European Review, 16 (3), 373–385.Google Scholar
  30. Grunwald, A. (2012). Technikzukünfte als Medium von Zukunftsdebatten und Technikgestaltung. Karlsruher Studien Technik und Kultur 6. Karlsruhe, Germany: KIT Scientific Publishing.Google Scholar
  31. Grunwald, A. (2013). Modes of orientation provided by future studies: Making sense of diversity and divergence. European Journal of Futures Research, 2 (1), 1–9.Google Scholar
  32. Guston, D., & Sarewitz, D. (2002). Real-time technology assessment. Technology in Society, 24 (1–2), 93–109.Google Scholar
  33. Hanks, C. (2010). General introduction. In C. Hanks (Ed.), Technology and values (pp. 1–6). Malden, MA : Wiley-Blackwell.Google Scholar
  34. Harris, J. (2007). Enhancing evolution: The ethical case for making better people. Princeton, NJ: Princeton University Press.Google Scholar
  35. Heidegger, M. (1977). The question concerning technology and other essays. (L. Lovitt, Trans.). New York, NY: Harper & Row.Google Scholar
  36. Jasanoff, S. (2005). Designs on nature: Science and democracy in Europe and the United States. Princeton, NJ: Princeton University Press.CrossRefGoogle Scholar
  37. Jonas, H. (1979). Das Prinzip Verantwortung. Versuch einer Ethik für die technologische Zivilisation. Frankfurt, Germany: Suhrkamp Verlag.Google Scholar
  38. Kass, L. (2003). Ageless bodies, happy souls: Biotechnology and the pursuit of happiness. The New Atlantis: A Journal of Technology & Society, 1 (1), 9–28.Google Scholar
  39. Loveridge, D., Dewick P., & Randles, S. (2008). Converging technologies at the nanoscale: The making of a new world? Technology Analysis & Strategic Management, 20 (1), 29–43.Google Scholar
  40. Luhmann, N. (1997). Die Gesellschaft der Gesellschaft. Frankfurt, Germany: Surkamp Verlag.Google Scholar
  41. Mali, F. (2009). Bringing converging technologies closer to civil society: The role of the precautionary principle. Innovation: The European Journal of Social Science Research, 22 (1), 53–75.Google Scholar
  42. Mali, F., & Pustovrh, T. (2014). Anticipatory governance of synthetic biology: Some challenges for Slovenia as a country with weak stakeholder networks. Paper at STS Conference Graz, Critical Issues in Science and Technology Studies, May 5–6, 2014, Graz, Austria. Available at
  43. Mali, F., Pustovrh, T., Groboljsek, B., & Coenen, C. (2012). National ethics advisory bodies in the emerging landscape of responsible research and innovation. Nanoethics, 6 (2), 167–184.Google Scholar
  44. Marcuse, H. (1967). Der eindimensionale Mensch. Studien zur Ideologie der fortgeschrittenen Industriegesellschaft. Neuwied, Germany: Hermann Luchterhand Verlag.Google Scholar
  45. Nelkin, D. (1987). Selling science: How the press covers science and technology. New York, NY: W. H. Freeman.Google Scholar
  46. Nordmann, A. (2007) If and then: A critique of speculative nanoethics. Nanoethics, 1 (1): 31–46.Google Scholar
  47. Nordmann, A., & Rip, A. (2009). Mind the gap revisited. Nature Nanotechnology, 4 (5), 273–274.Google Scholar
  48. PCSBI (U.S. Presidential Commission for the Study of Bioethical Issues). (2010). New directions: The ethics of synthetic biology and emerging technologies. Washington, D.C.: PCSBI. Available at
  49. Popper, R. K. (1957). The poverty of historicism. London, England: Routledge.Google Scholar
  50. Popper, R. K. (1962). The open society and its enemies. (Vol. 1). London, England: Routledge.Google Scholar
  51. Popper, R. K. (1963). Conjectures and refutations: The growth of scientific knowledge. London, England: Routledge.Google Scholar
  52. Pustovrh, T., & Mali, F. (2013). Exploring some challenges of the pharmaceutical cognitive enhancement discourse: Users and policy recommendations. Neuroethics, 7 (2): 137–158.Google Scholar
  53. Rabinow, P., and Bennett, G. (2009). Synthetic biology: Ethical ramifications. Systems and Synthetic Biology, 3 (1–4), 99–108.Google Scholar
  54. Roco, M. C., & Bainbridge, W. S. (2002). Converging technologies for improving human performance: Nanotechnology, biotechnology, information technology, and cognitive science. Dordrecht, the Netherlands: Kluwer Academic Publishers.Google Scholar
  55. Sandel, M. (2007). The case against perfection: Ethics in the age of genetic engineering. Cambridge, MA: Belknap Press of Harvard University Press.Google Scholar
  56. Schmidt, M., Kelle, A., Ganguli-Mitra, A., & Vriend, H. (Eds.). (2010). Synthetic biology: The technoscience and its societal consequences. Dordrecht, the Netherlands: Springer.Google Scholar
  57. Scott, N. (2009). Research ethics: European and Asian perspective, global challenges. In M. Ladikas (Ed.), Embedding society in science and technology policy: European and Chinese perspectives (pp. 21–39). Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  58. STAC (EC President’s Science and Technology Advisory Council). (2013): Science for an informed, sustainable and inclusive knowledge society. Policy paper by President Barroso’s Science and Technology Advisory Council, Brussels, August 29, 2013. Available at Google Scholar
  59. Von Schomberg, R. (2012). Prospects for technology assessment in a framework of responsible research and innovation. In M. Dusseldorp & R. Beecroft (Eds.), Technikfolgen abschätzen lehren: Bildungspotenziale transdisziplinärer Methoden (pp. 39–61). Wiesbaden, Germany: Vs Verlag.Google Scholar
  60. Weingart, P. (2001). Die Stunde der Wahrheit? Zum Verhältnis der Wissenschaft zu Politik, Wirtschaft und Medien in der Wissensgesellschaft. Göttingen, Germany: Velbrück Verlag.Google Scholar
  61. Zhang, J. Y. (2012). The art of trans-boundary governance: The case of synthetic biology. Systems and Synthetic Biology, 7 (3), 107–114.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  1. 1.LjubljanaSlovenia

Personalised recommendations