Philosophy of Late-Modern Technology

Towards a Clarification and Classification of Synthetic Biology
  • Jan C. Schmidt
Chapter
Part of the Technikzukünfte, Wissenschaft und Gesellschaft / Futures of Technology, Science and Society book series (TEWG)

Abstract

Synthetic biology is the crystallization point of late-modern technoscientific hypes and hopes. In 2010 the research entrepreneur Craig Venter announced the forthcoming advent of an epochal break and envisioned a fundamental shift in our technical capabilities. Synthetic organisms “are going to potentially create a new industrial revolution if we can really get cells to do the production we want; […] they could help wean us off of oil, and reverse some of the damage to the environment like capturing back carbon dioxide” (Venter 2010).

Keywords

Entropy Crystallization Dioxide Convection Europe 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Csete, M.E., & Doyle, J.C. (2002). Reverse Engineering of Biological Complexity. Science, 295, 1664–69.CrossRefGoogle Scholar
  2. Deplazes, A., & Huppenbauer, M. (2009). Synthetic organisms and living machines: Positioning the products of synthetic biology at the borderline between living and nonliving matter. Systems and Synthetic Biology, 3, 55–63.CrossRefGoogle Scholar
  3. DFG, acatech, & Leopoldina (2009). Deutsche Forschungsgemeinschaft (German Research Foundation), acatech – Deutsche Akademie der Technikwissenschaften (German academy of technological sciences), Leopoldina – Deutsche Akademie der Naturforscher (German academy of natural scientists). Synthetic Biology: Positions. Weinheim: Wiley VCH.Google Scholar
  4. Drexler, K.E. (1990). Engines of Creation: The Coming Era of Nanotechnology. Oxford: Oxford University Press.Google Scholar
  5. Drubin, D.A., Way, J.C., & Silver, P.A. (2007). Designing biological systems. Genes & Development, 21, 242–254.CrossRefGoogle Scholar
  6. Dupuy, J.P. (2004). Complexity and Uncertainty. A Prudential Approach to Nanotechnology. In: European Commission, Nanotechnologies: A Preliminary Risk Analysis on the Basis of a Workshop Organized in Brussels on 1–2 March 2004 by the Health and Consumer Protection Directorate General of the European Commission (pp. 71–94). http://ec.europa.eu/health/ph_risk/documents/ev_20040301_en.pdf. Accessed: 1 May 2014.
  7. Ebeling, W., & Feistel, R. (1994). Chaos und Kosmos: Prinzipien der Evolution. Heidelberg, Berlin: Spektrum.Google Scholar
  8. Endy, D. (2005). Foundations for engineering biology. Nature, 438, 449–453.CrossRefGoogle Scholar
  9. ETAG (2009). Making a perfect life. Bioengineering in the 21st century. European Technology Assessment Group, Rathenau Institute. The Hague.Google Scholar
  10. ETC (2007). ETC Group. Extreme Genetic Engineering. An Introduction to Synthetic Biology. http://www.etcgroup.org/sites/www.etcgroup.org/files/publication/602/01/synbioreportweb.pdf. Accessed: 1 May 2014.
  11. European Commission (2005). Synthetic Biology – Applying Engineering to Biology. Report of a NEST-High Level Expert Group EUR 21796. Luxembourg: Office for Official Publications of the European Communities.Google Scholar
  12. Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.Y., Algire, M.A., … & Venter, J.C. (2010). Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 329(5987), 52–56.CrossRefGoogle Scholar
  13. Giese, B., Koenigstein, S., Wigger, H., Schmidt, J.C., & Gleich, A. v. (2013). Rational engineering principles in synthetic biology: A framework for quantitative analysis and an initial assessment. Biological Theory, 8(4), 324–333.CrossRefGoogle Scholar
  14. Grunwald, A. (2008). Auf dem Weg in eine nanotechnologische Zukunft. Philosophisch-ethische Fragen. Freiburg: Alber.Google Scholar
  15. Grunwald, A. (2012). Synthetische Biologie als Naturwissenschaft mit technischer Ausrichtung. Plädoyer für eine Hermeneutische Technikfolgenabschätzung. Technikfolgenabschätzung— Theorie und Praxis, 21(2), 10–15.Google Scholar
  16. Hubig, C. (2006). Die Kunst des Möglichen: Technikphilosophie als Reflexion der Medialität (Vol. 1). Bielefeld: transcript.CrossRefGoogle Scholar
  17. Jonas, H. (1984). The Imperative of Responsibility. In Search of an Ethics for the Technological Age. Chicago: University of Chicago Press.Google Scholar
  18. Jonas, H. (1985). Laßt uns einen Menschen klonieren: Von der Eugenik zur Gentechnologie. In: H. Jonas, Technik, Medizin und Ethik: Praxis des Prinzips Verantwortung (pp. 162–203). Frankfurt/Main: Insel.Google Scholar
  19. Jones, R. (2004). Soft Machines. Oxford: Oxford University Press.Google Scholar
  20. Kaminski, A., Gelhard, A. (eds.) (2014). Zur Philosophie informeller Technisierung. Darmstadt: WBG.Google Scholar
  21. Karafyllis, N. (ed.) (2003). Biofakte. Paderborn: Mentis.Google Scholar
  22. Köchy, K. (2011). Konstruktion von Leben? Herstellungsideale und Machbarkeitsgrenzen in der Synthetischen Biologie. In: V. Gerhardt, K. Lucas, G. Stock (eds.), Evolution. Theorie, Formen und Konsequenzen eines Paradigmas in Natur, Technik und Kultur (pp. 233–242). Berlin, Heidelberg: Akademie Verlag.Google Scholar
  23. Köchy, K. (2012). Sind die Überlegungen von Hans Jonas zum Sonderstatus biologischer Technik angesichts der Entwicklung in der Synthetischen Biologie noch haltbar? In: M.B. Bondio, H. Siebenpfeiffer (eds.), Konzepte des Humanen. Ethische und kulturelle Herausforderungen (pp. 81–101). Freiburg, München: Alber.Google Scholar
  24. Krohn, W., & Küppers, G. (eds.) (1992). Selbstorganisation. Aspekte einer wissenschaftlichen Revolution. Braunschweig: Vieweg.Google Scholar
  25. Küppers, B.-O. (2000). Die Strukturwissenschaften als Bindeglied zwischen Natur- und Geisteswissenschaften. In: B.-O. Küppers (ed.), Die Einheit der Wirklichkeit. Zum Wissenschaftsverständnis der Gegenwart (pp. 89–110). München: Fink.Google Scholar
  26. Langer, J.S. (1980). Instabilities and Pattern Formation. Reviews of Modern Physics. 52, 1–28.CrossRefGoogle Scholar
  27. Luhmann, N. (2003). Soziologie des Risikos. Berlin, New York: de Gruyter.Google Scholar
  28. Luisi, P. L., & Stano, P. (2011). Synthetic biology: Minimal cell mimicry. Nature Chemistry, 3(10), 755–756.CrossRefGoogle Scholar
  29. Nicolis, G., & Prigogine, I. (1977). Self-Organization in Nonequilibrium Systems. From Dissipative Structures to Order through Fluctuations. New York: Wiley.Google Scholar
  30. Nolfi, S., & Floreano, D. (2000). Evolutionary Robotics: The Biology, Intelligence, and Technology of Self-Organizing Machines. Cambridge: MIT Press.Google Scholar
  31. Nordmann, A. (2008). Technology Naturalized. A Challenge to Design for the Human Scale. In: P.E. Vermaas, P. Kroes, A. Light, S. Moore (eds.), Philosophy and Design: From Engineering to Architecture (pp. 173–184). Heidelberg, New York: Springer.CrossRefGoogle Scholar
  32. Pollack, J. (2002). Breaking the Limits on Design Complexity. In: M.C. Roco, W.S. Bainbridge (eds.), Converging Technologies for Improving Human Performance. Arlington: National Science Foundation.Google Scholar
  33. Pottage, A., & Sherman, B. (2007). Organisms and manufactures: on the history of plant inventions. Melbourne University Law Review, 31, 539–568.Google Scholar
  34. Pühler, A., Müller-Röber, B., & Weitze, M.-D. (eds.) (2011). Synthetische Biologie. Die Geburt einer neuen Technikwissenschaft. Berlin, Heidelberg: Springer.Google Scholar
  35. Roco, M.C., & Bainbridge, W.S. (eds.) (2002). Converging Technologies for Improving Human Performance. Arlington: National Science Foundation.Google Scholar
  36. Schmidt, J.C. (2004). Unbounded Technologies: Working through the Technological Reductionism of Nanotechnology. In: D. Baird, A. Nordmann, J. Schummer (eds.), Discovering the Nanoscale (pp. 35–50). Amsterdam: IOS Press.Google Scholar
  37. Schmidt, J.C. (2008a). Instabilität in Natur und Wissenschaft. Berlin: de Gruyter.CrossRefGoogle Scholar
  38. Schmidt, J.C. (2008b). Towards a philosophy of interdisciplinarity. An attempt to provide a classification and clarification. Poiesis & Praxis, 5(1), 53–69.CrossRefGoogle Scholar
  39. Schmidt, J.C. (2011). Challenged by Instability and Complexity. On the methodological discussion of mathematical models in nonlinear sciences and complexity theory. In: C. Hooker (ed.), Philosophy of Complex Systems (pp. 223–254) (Series Philosophy of Sciences). Amsterdam: Elsevier.Google Scholar
  40. Schmidt, J.C. (2012a). Quellen des Nichtwissens. Ein Beitrag zur Wissenschafts- und Technikphilosophie des Nichtwissens. In: N. Janich, A. Nordmann, L. Schebek (eds.), Nichtwissenskommunikation in den Wissenschaften: interdisziplinäre Zugänge (pp. 93–124). Frankfurt a.M.: Lang.Google Scholar
  41. Schmidt, J.C. (2012b). Selbstorganisation als Kern der Synthetischen Biologie. Ein Beitrag zur Prospektiven Technikfolgenabschätzung. Technikfolgenabschätzung – Theorie und Praxis, 21(2), 29–35.Google Scholar
  42. Schmidt, J.C. (2013). Defending Hans Jonas’ Environmental Ethics: On the Relation between Philosophy of Nature and Ethics. Environmental Ethics, 35, 461–479.CrossRefGoogle Scholar
  43. Schwille, P. (2011). Bottom-Up Synthetic Biology: Engineering in a Tinkerer’s World. Science, 333, 1252–54.CrossRefGoogle Scholar
  44. Stephan, A. (2007). Emergenz: Von der Unvorhersagbarkeit zur Selbstorganisation. Paderborn: Mentis.Google Scholar
  45. TESSY (2008). Towards a European Strategy for Synthetic Biology. Synthetic Biology in Europe. Information leaflet. http://www.tessy-europe.eu/public_docs/SyntheticBiology_TESSY-Information-Leaflet.pdf. Accessed: 23 May 2013.
  46. Tucker, J.B., & Zilinskas, R.A. (2006). The promise and perils of synthetic biology. New Atlantis, 12(1), 25–45.Google Scholar
  47. Venter, J.C. (2010). The Creation of ‘Synthia’ – Synthetic Life. The Naked Scientist, Science Interview May 23, 2010. http://www.thenakedscientists.com/HTML/content/interviews/interview/1332/. Accessed: 20 June 2013. Weizsäcker, C.F. v. (1974). Die Einheit der Natur. München: dtv.
  48. Westerhoff, H.V., & Palsson, B.O. (2004). The evolution of molecular biology into systems biology. Nature Biotechnology, 22(10), 1249–52.CrossRefGoogle Scholar
  49. Wiener, N. (1968). Kybernetik: Regelung und Nachrichtenübertragung in Lebewesen und Maschine. Hamburg: Rowohlt.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2016

Authors and Affiliations

  • Jan C. Schmidt
    • 1
  1. 1.Department of Social SciencesDarmstadt University of Applied SciencesDarmstadtGermany

Personalised recommendations