Skip to main content

Simulation of Electromagnetically and Thermally Controlled Ionic Flow in a Fuel Cell

  • Conference paper
Nachhaltige Energieversorgung und Integration von Speichern
  • 9577 Accesses

Abstract

A major issue related to the use of fuel cells to convert electrical energy in chemical energy in modern power supply concepts are their bad dynamical properties. To overcome these problems, it seems promising to introduce a suitable mechanism to control the ionic flow inside the fuel cell. The purpose of this work is to estimate the potential of certain approaches to controlling the ionic flow inside the fuel cell via magnetic and temperature fields. To this end, mathematical models combining a description of the ionic movement in a hydrogen fuel cell with a model for the effects of an additional magnetic or temperature field, respectively, are proposed. Further the implementation of these models in the context of the finite element method combined with other simulation techniques is discussed, such as, e.g., a molecular dynamic model. Finally, some preliminary results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. U.S. Department of Energy: Fuel Cell Handbook. 7th ed. (2004)

    Google Scholar 

  2. Heuck, K., Dettmann, K.-D., Schulz, D.: Elektrische Energieversorgung, 8th Edition, Vieweg, Wiesbaden (2010)

    Book  Google Scholar 

  3. Aleksandrova, E., Hink, S., Hiesgen, R., Roduner, E.: Spatial distribution and dynamics of proton conductivity in fuel cell membranes: potential and limitations of electrochemical atomic force microscopy measurements. J. Phys. Condens. Matter 23 (2011)

    Google Scholar 

  4. Schulz, D.: Brennstoffzellenmembraneinheit, steuerbare Brennstoffzelle und Hochdruckelektrolysezelle, 15.12. 2011, Patent DE 10 2011 088 613

    Google Scholar 

  5. Grujicic, M., Chittajallu, K. M.: Design and optimization of polymer electrolyte membrane (PEM) fuel cells. Appl. Surface Sci. 227, 56–72 (2004)

    Article  Google Scholar 

  6. Obayopo, S. O., Bello-Ochende, T., Meyer, J. P.: Performance enhancement of a PEM fuel cell through rectant gas channel and gas diffusion layer optimisation. University of Pretoria

    Google Scholar 

  7. Kakac, S., Pramuanjaroenkij, A., Xiang Yang Zhou: A review of numerical modeling of solid oxide fuel cells. Int. J. Hydrogen Energy 32, 761–786 (2007)

    Article  Google Scholar 

  8. Fogler, H. S.: Elements of Chemical Reaction Engineering. 3rd ed., Prentice Hall Englewood Cliffs (1999)

    Google Scholar 

  9. Bird, R. B., Stewart, W. E., Lightfoot, E. N.: Transport Phenomena. Wiley, New Nork (1960)

    Google Scholar 

  10. Sukkee Um, Wang, C.-Y., Chen, K. S.: Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 147 (12). 4485–4493 (2000)

    Article  Google Scholar 

  11. Chen Yun Wang, Ken Chen, Mishler, J., Sung Chan Cho, Cordobes Adroher, X.: A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. US Department of Energy Publications, US Department of Energy (2011)

    Google Scholar 

  12. Baschuk, J. J., Xianguo Li: Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. J. Power Sources 86, 181–196 (2000)

    Article  Google Scholar 

  13. Kinouchi, Y., Tanimoto, S., Ushita, T., Sato, K., Yamaguchi, H., Miyamoto, H.: Effects of Static Magnetic Fields on Diffusion in Solutions. Bioelectromagnetics 9, 159–166 (1988)

    Article  Google Scholar 

  14. Schwarz, H. R.: Methode der finiten Elemente. Teubner (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Fachmedien Wiesbaden

About this paper

Cite this paper

Stiemer, M., Lücken, A., Do, T., Schulz, D. (2015). Simulation of Electromagnetically and Thermally Controlled Ionic Flow in a Fuel Cell. In: Schulz, D. (eds) Nachhaltige Energieversorgung und Integration von Speichern. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-10958-5_22

Download citation

Publish with us

Policies and ethics