Advertisement

Simulation of Electromagnetically and Thermally Controlled Ionic Flow in a Fuel Cell

  • M. Stiemer
  • A. Lücken
  • T. T. Do
  • D. Schulz
Conference paper

Abstract

A major issue related to the use of fuel cells to convert electrical energy in chemical energy in modern power supply concepts are their bad dynamical properties. To overcome these problems, it seems promising to introduce a suitable mechanism to control the ionic flow inside the fuel cell. The purpose of this work is to estimate the potential of certain approaches to controlling the ionic flow inside the fuel cell via magnetic and temperature fields. To this end, mathematical models combining a description of the ionic movement in a hydrogen fuel cell with a model for the effects of an additional magnetic or temperature field, respectively, are proposed. Further the implementation of these models in the context of the finite element method combined with other simulation techniques is discussed, such as, e.g., a molecular dynamic model. Finally, some preliminary results are presented.

Keywords

Fuel Cell Drift Velocity Lorentz Force Polymer Electrolyte Membrane Ionic Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    U.S. Department of Energy: Fuel Cell Handbook. 7th ed. (2004)Google Scholar
  2. [2]
    Heuck, K., Dettmann, K.-D., Schulz, D.: Elektrische Energieversorgung, 8th Edition, Vieweg, Wiesbaden (2010)CrossRefGoogle Scholar
  3. [3]
    Aleksandrova, E., Hink, S., Hiesgen, R., Roduner, E.: Spatial distribution and dynamics of proton conductivity in fuel cell membranes: potential and limitations of electrochemical atomic force microscopy measurements. J. Phys. Condens. Matter 23 (2011)Google Scholar
  4. [4]
    Schulz, D.: Brennstoffzellenmembraneinheit, steuerbare Brennstoffzelle und Hochdruckelektrolysezelle, 15.12. 2011, Patent DE 10 2011 088 613Google Scholar
  5. [5]
    Grujicic, M., Chittajallu, K. M.: Design and optimization of polymer electrolyte membrane (PEM) fuel cells. Appl. Surface Sci. 227, 56–72 (2004)CrossRefGoogle Scholar
  6. [6]
    Obayopo, S. O., Bello-Ochende, T., Meyer, J. P.: Performance enhancement of a PEM fuel cell through rectant gas channel and gas diffusion layer optimisation. University of PretoriaGoogle Scholar
  7. [7]
    Kakac, S., Pramuanjaroenkij, A., Xiang Yang Zhou: A review of numerical modeling of solid oxide fuel cells. Int. J. Hydrogen Energy 32, 761–786 (2007)CrossRefGoogle Scholar
  8. [8]
    Fogler, H. S.: Elements of Chemical Reaction Engineering. 3rd ed., Prentice Hall Englewood Cliffs (1999)Google Scholar
  9. [9]
    Bird, R. B., Stewart, W. E., Lightfoot, E. N.: Transport Phenomena. Wiley, New Nork (1960)Google Scholar
  10. [10]
    Sukkee Um, Wang, C.-Y., Chen, K. S.: Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells. J. Electrochem. Soc. 147 (12). 4485–4493 (2000)CrossRefGoogle Scholar
  11. [11]
    Chen Yun Wang, Ken Chen, Mishler, J., Sung Chan Cho, Cordobes Adroher, X.: A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. US Department of Energy Publications, US Department of Energy (2011)Google Scholar
  12. [12]
    Baschuk, J. J., Xianguo Li: Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding. J. Power Sources 86, 181–196 (2000)CrossRefGoogle Scholar
  13. [13]
    Kinouchi, Y., Tanimoto, S., Ushita, T., Sato, K., Yamaguchi, H., Miyamoto, H.: Effects of Static Magnetic Fields on Diffusion in Solutions. Bioelectromagnetics 9, 159–166 (1988)CrossRefGoogle Scholar
  14. [14]
    Schwarz, H. R.: Methode der finiten Elemente. Teubner (1991)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • M. Stiemer
    • 1
  • A. Lücken
    • 2
  • T. T. Do
    • 2
  • D. Schulz
    • 2
  1. 1.Institute for the Theory of Electrical EngineeringHamburg
  2. 2.Institute for Electrical Power SystemsHamburg

Personalised recommendations