Skip to main content

Advanced Grid Integration of Renewables Enabled by Power Electronics Technology

  • Conference paper
Nachhaltige Energieversorgung und Integration von Speichern

Abstract

In the past decades, many countries (e.g., Germany and Denmark) have experienced a significant change in their energy structures – from fossil-based resources to clean renewables. The scenario of highly penetrated renewables is going to be further enhanced in the future mixed energy paradigms. This requires that the production, distribution and use of the energy should be as technological efficient as possible and incentives to save energy at the end-user should also be strengthened. In order to realize the transition smoothly and effectively, energy conversion systems, currently based on power electronics technology, will again play an essential role in advancing the grid integration of renewables. In view of this issue, some of the most emerging renewable energies, e.g., wind energy and photovoltaic, which by means of power electronics are changing character as a major part in the electricity generation, are explored. Issues like demands to renewables, power converter technologies, control of the systems, and advanced grid integration are covered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. REN21, "Renewables 2015: Global Status Report (GSR)," [Online]. Available: www.ren21.net/, Jun. 2015.

    Google Scholar 

  2. SolarPower Europe, "Global market outlook for solar power – 2015-2019," [Online]. Available: www.solarpowereurope.org/, Jun. 2015.

    Google Scholar 

  3. E. J. Coster, J. M. A. Myrzik, B. Kruimer, and W. L. Kling, “Integration issues of distributed generation in distribution grids,” Proc. IEEE, vol. 99, no. 1, pp. 28–39, Jan. 2011.

    Article  Google Scholar 

  4. R. Teodorescu, M. Liserre, and P. Rodriguez, Grid Converters for Photovoltaic and Wind Power Systems. Hoboken, NJ: Wiley, 2011.

    Book  Google Scholar 

  5. F. Blaabjerg and D. M. Ionel, "Renewable enegy devices and systems – state-of-the-art technology, research and development, challenges and future trends," Electric Power Components and Systems, vol. 43, no. 12, pp. 1319–1328, Jul. 2015.

    Article  Google Scholar 

  6. F. Blaabjerg, R. Teodorescu, M. Liserre, and A.V. Timbus, "Overview of control and grid synchronization for distributed power generation systems," IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409, Oct. 2006.

    Article  Google Scholar 

  7. Abu-Rub, H., Malinowski, M., and Al-Hadad, K., Eds., Power Electronics for Renewable Energy Systems, Transportation and Industrial Applications, Hoboken, NJ: Wiley, 2014.

    Google Scholar 

  8. S.B. Kjaer, J.K. Pedersen, and F. Blaabjerg, "A review of singlephase grid-connected inverters for photovoltaic modules," IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1292-1306, Sept.-Oct. 2005.

    Article  Google Scholar 

  9. D. Meneses, F. Blaabjerg, O. García, and J.A. Cobos, "Review and comparison of step-up transformerless topologies for photovoltaic AC-module application," IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2649–2663, Jun. 2013.

    Article  Google Scholar 

  10. F. Blaabjerg and K. Ma, "Future on power electronics for wind turbine systems," IEEE J. Emerg. Sel. Top. Power Electron., vol. 1, no. 3, pp. 139–152, Sept. 2013.

    Article  Google Scholar 

  11. J.M. Carrasco, L.G. Franquelo, J.T. Bialasiewicz, E. Galvan, R.C.P. Guisado, Ma.A.M. Prats, J.I. Leon, and N. Moreno-Alfonso, "Power-electronic systems for the grid integration of renewable energy sources: a survey," IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1002–1016, Jun. 2006.

    Article  Google Scholar 

  12. M. Liserre, T. Sauter, and J.Y. Hung, "Future energy systems: Integrating renewable energy sources into the smart power grid through industrial electronics," IEEE Ind. Electron. Mag., vol. 4, no. 1, pp. 18–37, Mar. 2010.

    Article  Google Scholar 

  13. M. Liserre, R. Cardenas, M. Molinas, and J. Rodriguez, "Overview of multi-MW wind turbines and wind parks," IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1081–1095, Apr. 2011.

    Article  Google Scholar 

  14. K. Ma and F. Blaabjerg, "Multilevel converters for 10 MW wind turbines," in Proc. of EPE’11, pp. 1-10, Aug. 30 2011-Sept. 1 2011.

    Google Scholar 

  15. F. Blaabjerg, K. Ma, and D. Zhou, "Power electronics and reliability in renewable energy systems," in Proc. of ISIE, pp. 19-30, 28–31 May 2012.

    Google Scholar 

  16. H. Wang, M. Liserre, and F. Blaabjerg, "Toward reliable power electronics: challenges, design tools, and opportunities," IEEE Ind. Electron. Mag., vol. 7, no. 2, pp. 17–26, Jun. 2013.

    Article  Google Scholar 

  17. K. Ma, L. Tutelea, I. Boldea, D. M. Ionel, and F. Blaabjerg, "Power electronic drives, controls, and electric generators for large wind turbines–an overview," Electric Power Components and Systems, vol. 43, no. 12, pp. 1406–1421, Jul. 2015.

    Article  Google Scholar 

  18. Y. Yang, P. Enjeti, H. Wang, and F. Blaabjerg, "Wide-scale adoption of photovoltaic energy: grid code modifications are explored in the distribution grid," IEEE Ind. Appl. Mag., vol. 21, no. 5, pp. 21-31, Sept.-Oct. 2015.

    Google Scholar 

  19. N.P. Papanikolaou, "Low-voltage ride-through concept in flyback inverterbased alternating current photovoltaic modules," IET Power Electron., vol. 6, no. 7, pp. 1436–1448, Aug. 2013.

    Article  Google Scholar 

  20. Y. Bae, T.-K. Vu, and R.-Y. Kim, "Implemental control strategy for grid stabilization of grid-connected PV system based on german grid code in symmetrical low-to-medium voltage network," IEEE Trans. Energy Conv., vol. 28, no. 3, pp. 619–631, Sept. 2013.

    Article  Google Scholar 

  21. E. ON GmbH, "Grid Code - High and extra high voltage." [Online]. Available: http://www.eon-netz.com/.

    Google Scholar 

  22. Comitato Elettrotecnico Italiano, "CEI 0-21: Reference technical rules for connecting users to the active and passive LV distribution companies of electricity." [Online]. Available: http://www.ceiweb.it/.

    Google Scholar 

  23. P. Rodriguez, A.V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, "Flexible active power control of distributed power generation systems during grid faults," IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2583–2592, Oct. 2007.

    Article  Google Scholar 

  24. G.M.S. Azevedo, G. Vazquez, A. Luna, D. Aguilar, and A. Rolan, "Photovoltaic inverters with fault ride-through Capability," in Proc. of ISIE’09, pp. 549-553, 5–8 Jul. 2009.

    Google Scholar 

  25. C.H. Benz, W.-T. Franke, and F.W. Fuchs, "Low voltage ride through capability of a 5 kW grid-tied solar inverter," in Proc. of EPE/PEMC, pp. T12-13-T12-20, 6-8 Sept. 2010.

    Google Scholar 

  26. X. Bao, P. Tan, F. Zhuo, and X. Yue, "Low voltage ride through control strategy for high-power grid-connected photovoltaic inverter," in Proc. of APEC’13, pp. 97-100, 17–21 Mar. 2013.

    Google Scholar 

  27. H.-C. Chen, C.-T. Lee, P.T. Cheng, R. Teodorescu, F. Blaabjerg, and S. Bhattacharya, "A flexible low-voltage ride-through operation for the distributed generation converters," in Proc. of PEDS’13, pp. 1354-1359, 22–25 Apr. 2013.

    Google Scholar 

  28. Y. Yang, F. Blaabjerg, and Z. Zou, "Benchmarking of grid fault modes in single-phase grid-connected photovoltaic systems," IEEE Trans. Ind. Appl., vol. 49, no. 5, pp. 2167-2176, Sept./Oct. 2013.

    Article  Google Scholar 

  29. Y. Yang, F. Blaabjerg, and H. Wang, "Low voltage ride-through of single-phase transformerless photovoltaic inverters," IEEE Trans. Ind. Appl., vol. 50, no. 3, pp. 1942-1952, May/Jun. 2014.

    Article  Google Scholar 

  30. Meneses, D.; Blaabjerg, F.; García, O.; Cobos, J.A., "Review and Comparison of Step-Up Transformerless Topologies for Photovoltaic AC-Module Application," IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2649–2663, June 2013.

    Article  Google Scholar 

  31. Y. Yang and F. Blaabjerg, "Overview of single-phase gridconnected photovoltaic systems," Electric Power Components and Systems, vol. 43, no. 12, pp. 1352–1363, Jul. 2015.

    Article  Google Scholar 

  32. T. Kerekes, D. Sera, and L. Mathe, "Three-phase photovoltaic systems: structures, topologies, and control," Electric Power Components and Systems, vol. 43, no. 12, pp. 1364–1375, Jul. 2015.

    Article  Google Scholar 

  33. E. Koutroulis and F. Blaabjerg, "Design optimization of transformerless grid-connected PV inverters including reliability," IEEE Trans. Power Electron., vol. 28, no. 1, pp. 325–335, Jan. 2013.

    Article  Google Scholar 

  34. Y. Yang, H. Wang, and F. Blaabjerg, "Reliability assessment of transformerless PV inverters considering mission profiles," International Journal of Photoenergy, vol. 2015, 10 pages, 2015.

    Google Scholar 

  35. Energinet – Technical regulation 3.2.5 for wind power plants with a power output greater than 11 kW, Sep. 2010.

    Google Scholar 

  36. E.ON-Netz – Grid Code. Requirements for offshore grid connections in the E.ON Netz network, April 2008.

    Google Scholar 

  37. M. Altin, O. Goksu, R. Teodorescu, P. Rodriguez, B. Bak-Jensen, L. Helle, “Overview of recent grid codes for wind power integration,” in Proc. of OPTIM’2010, pp.1152-1160, 2010.

    Google Scholar 

  38. J. Rodriguez, S. Bernet, P.K. Steimer, and I.E. Lizama, "A survey on neutral-point-clamped inverters," IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2219–2230, Jul. 2010.

    Article  Google Scholar 

  39. B. Andresen and J. Birk, "A high power density converter system for the Gamesa G10x 4.5 MW Wind turbine," in Proc. of EPE, pp. 1–7, 2007.

    Google Scholar 

  40. S.V. Araujo, P. Zacharias, and R. Mallwitz, "Highly efficient single-phase transformerless inverters for grid-connected PV systems," IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 3118–3128, Sept. 2010.

    Article  Google Scholar 

  41. R. Gonzalez, J. Lopez, P. Sanchis, and L. Marroyo, "Transformerless inverter for single-phase photovoltaic systems," IEEE Trans. Power Electron., vol. 22, no. 2, pp. 693–697, Mar. 2007.

    Article  Google Scholar 

  42. H. Schmidt, S. Christoph, and J. Ketterer, "Current inverter for direct/alternating currents, has direct and alternating connections with an intermediate power store, a bridge circuit, rectifier diodes and a inductive choke," German Patent DE10 221 592 A1, 4 Dec. 2003.

    Google Scholar 

  43. I. Patrao, E. Figueres, F. Gonzalez-Espin, and G. Garcera, "Transformerless topologies for grid-connected single-phase photovoltaic inverters," Renewable and Sustainable Energy Reviews, vol. 15, no. 7, pp. 3423–3431, Sept. 2011.

    Article  Google Scholar 

  44. L. Zhang, K. Sun, L. Feng, H. Wu, and Y. Xing, "A family of neutral point clamped full-bridge topologies for transformerless photovoltaic grid-tied inverters," IEEE Trans. Power Electron., vol. 28, no. 2, pp. 730–739, Feb. 2013.

    Article  Google Scholar 

  45. B. Gu, J. Dominic, J.-S. Lai, C.-L. Chen, T. LaBella, and B. Chen, "High reliability and efficiency single-phase transformerless inverter for grid-connected photovoltaic systems," IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2235–2245, May 2013.

    Article  Google Scholar 

  46. J.D., van Wyk and F.C. Lee, "On a future for power electronics," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 2, pp. 59–72, Jun. 2013.

    Article  Google Scholar 

  47. J.G. Kassakian and T.M. Jahns, "Evolving and emerging applications of power electronics in systems," IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 1, no. 2, pp. 47–58, Jun. 2013.

    Article  Google Scholar 

  48. M. Campbell, J. Blunden, E. Smeloff, and P. Aschenbrenner, "Minimizing utility-scale PV power plant LCOE through the use of high capacity factor configurations," in Proc. of IEEE PVSC, pp. 421-426, 7–12 Jun. 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Fachmedien Wiesbaden

About this paper

Cite this paper

Blaabjerg, F., Yang, Y., Ma, K., Wang, X. (2015). Advanced Grid Integration of Renewables Enabled by Power Electronics Technology. In: Schulz, D. (eds) Nachhaltige Energieversorgung und Integration von Speichern. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-10958-5_1

Download citation

Publish with us

Policies and ethics