Skip to main content

Hochenergiebatterien nach Lithium-Ion

  • Chapter
  • First Online:
  • 19k Accesses

Zusammenfassung

Wiederaufladbare Batterien mit spezifischen Energien jenseits der 200 Wh kg−1 und herausragenden Leistungsdichten sollen die heutige Lithiumionen-Technologie in den nächsten Jahrzehnten ablösen. Manche Forschungsansätze reichen in die Zeit der Ölkrise in den 1970er und 1980er Jahren zurück. Das Kapitel beschreibt visionäre Konzepte von Metallionen- und Metall-Luft-Batterien, bis hin zu Festkörpertechnologien und Anionen-Batterien. Vor- und Nachteile werden im Hinblick auf eine baldige Nutzung in Speichersystemen abgewogen.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Literatur

Lithium-Schwefel

  1. Agostini, M., Lee, D.-J., Scrosati, B., Sun, Y.K., Hassoun, J.: Characteristics of Li2S8-tetraglyme catholyte in a semi-liquid lithium-sulfur battery. J. Power Sources 265, 14–19 (2014)

    Article  Google Scholar 

  2. Chen, L., Shaw, L.L.: Recent advances in lithium-sulfur batteries. J. Power Sources 267, 770–783 (2014)

    Article  Google Scholar 

  3. Ding, N., Chien, S.W., Hor, T.S.A., Liu, Z., Zong, Y.: Key parameters in design of lithium sulfur batteries. J. Power Sources 269, 111–116 (2014)

    Article  Google Scholar 

  4. Hassoun, J., Scrosati, B.: A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed. 49, 2371–2374 (2010)

    Article  Google Scholar 

  5. Hoss, R., Vögtle, F.: Templatsynthesen. Angew. Chem. 106(4), 389 (1994)

    Article  Google Scholar 

  6. Huang, C., Xiao, J., Shao, Y., Zheng, J., Bennett, W.D., Lu, D., Saraf, L.V., Engelhard, M., Ji, L., Zhang, J., Li, X., Graff, G.L., Liu, J.: Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures. Nat. Commun. 5, 3015 (2014)

    Google Scholar 

  7. Kim, J., Lee, D.-J., Jung, H.-G., Sun, Y.-K., Hassoun, J., Scrosati, B.: An advanced lithium-sulfur battery. Adv. Funct. Mat. 23, 1076–1080 (2013)

    Article  Google Scholar 

  8. Lin, Z., Liu, Z., Fu, W., Dudney, N.J., Liang, C.: Lithium polysulfidophosphates: A family of lithium-conducting sulfur-rich compounds for lithium-sulfur batteries. Angew. Chem. Int. Ed. 52, 7460–7463 (2013)

    Article  Google Scholar 

  9. Scrosati, B., Abraham, K.M., van Schalkwijk, W., Hassoun, J.: Lithium Batteries, Advanced Technologies and Applications. Wiley, Hoboken (2013)

    Book  Google Scholar 

  10. Scheers, J., Fantini, S., Johansson, P.: A review of electrolytes for lithium-sulphur batteries. J. Power Sources 255, 204–218 (2014)

    Article  Google Scholar 

  11. Seh, Z.W., Li, W., Cha, J.J., Zheng, G., Yang, Y., McDowell, M.T., Hsu, P.C., Cui, Y.: Sulphur–TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 4, 1331 (2013)

    Article  Google Scholar 

  12. Terada, S., Nozawa, R., Ikeda, K., Mandaia, T., Ueno, K., et al.: Room temperature sodium-sulfur batteries with glyme-Na salt solvate ionic liquid electrolytes. ECS Meeting Abstract. http://ma.ecsdl.org/content/MA2014-04/2/248.short, geprüft: November 2015

Lithium-Luft

  1. Abraham, K.M., Jiang, Z.: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1–5 (1996)

    Article  Google Scholar 

  2. Aurbach, D., Daroux, M., Faguy, P., Yeager, E.: The electrochemistry of noble metal electrodes in aprotic organic solvents containing lithium salts. J. Electroanal. Chem. 297, 225–244 (1991)

    Article  Google Scholar 

  3. McCloskey, B.D., Bethune, D.S., Shelby, R.M., Girishkumar, G., Luntz, A.C.: Solvents’ critical role in nonaqueous lithium–oxygen battery electrochemistry. J. Phys. Chem. Lett. 2(10), 1161–1166 (2011)

    Article  Google Scholar 

  4. Jung, H.-G., Hassoun, J., Park, J.-B., Sun, Y.-K., Scrosati, B.: An improved high-performance lithium-air battery. Nat. Chem. 4, 579–585 (2012)

    Article  Google Scholar 

  5. Li, F., Kitaura, H., Zhou, H.: The pursuit of rechargeable solid-state Li–air batteries. Energy Environ. Sci. 6, 2302–2311 (2013)

    Google Scholar 

  6. Lu, Y.C., Xu, Z., Gasteiger, H.A., Chen, S., et al.: Platinum-gold nanoparticles: a highly active functional electrocatalyst for rechargeable lithium-air batteries. J. Am. Chem. Soc. 132(35), 12170–12171 (2010)

    Article  Google Scholar 

  7. Kowalczk, I., Read, J., Salomon, M.: Li-air batteries: A classic example of limitations owing to solubilities. Pure Appl. Chem. 79, 851–860 (2007)

    Article  Google Scholar 

  8. Littauer, E.L., Tsai, K.C.: Anodic behavior of lithium in aqueous electrolytes. J. Electrochem. Soc. 123, 771–776 (1976)

    Article  Google Scholar 

  9. Ogasawara, T., Debart, A., Holzapfel, M., Novak, P., Bruce, P.G.: Rechargeable Li2O2 electrode for lithium batteries. J. Am. Chem. Soc. 128, 1390–1393 (2006)

    Article  Google Scholar 

  10. Peng, Z., Freunberger, S.A., Chen, Y., Bruce, P.G.: A reversible and higher-rate Li-O2 battery. Science 337, 563–566 (2012)

    Article  Google Scholar 

  11. (a) Visco, S.J., Nimon, E., De Jonghe, L.C. In: Garche, J. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 376. Elsevier, Amsterdam (2009) (b) US 7645543 (2010), US 7282295 (2007), US 7282296 (2007), US 7824806 (2010), US 20130045428

    Google Scholar 

  12. Visco, S.J., Nimon, V.Y., Petrov, A., Pridatko, K., Goncharenko, N., Nimon, E., De Jonghe, L., Volfkovich, Y.M., Bograchev, D.A.: Aqueous and nonaqueous lithium-air batteries enabled by water-stable lithium metal electrodes. J. Solid State Electrochem. 18, 1443–1456 (2014)

    Google Scholar 

  13. Walker, W., Giordani, V., Uddin, J., Bryantsev, V.S., Chase, G.V., Addison, D.: A rechargeable Li–O2 battery using a lithium nitrate/N,N-dimethylacetamide electrolyte. J. Am. Chem. Soc. 135, 2076–2079 (2013)

    Article  Google Scholar 

  14. Wang, J., Li, Y., Sun, X.: Challenges and opportunities of nanostructured materials for aprotic rechargeable lithium-air batteries. Nano Energy 2, 443–467 (2013)

    Article  Google Scholar 

  15. Wang, Y., He, P., Zhou, H.: A lithium-air capacitor-battery based on a hybrid electrolyte. Energy Environ. Sci. 4, 4994–4999 (2011)

    Google Scholar 

  16. (a) Xie, B., Lee, H.S., Li, H., Yang, X.Q., McBreen, J., Chen, L.Q.: New electrolytes using Li2O or Li2O2 oxides and tris(pentafluorophenyl) borane as boron based anion receptor for lithium batteries. Electrochem. Commun. 10, 1195–1197 (2008) (b) Li, L.F., Xie, B., Lee, H.S., Li, H., Yang, X.-Q., McBreen, J., Huang, X.J.: Studies on the enhancement of solid electrolyte interphase formation on graphitized anodes in LiX-carbonate based electrolytes using Lewis acid additives for lithium-ion batteries. J. Power Sources 189, 539–542 (2009) (c) Shanmukaraj, D., Grugeon, S., Gachot, G., Laruelle, S., Mathiron, D., Tarascon, J.M., Armand, M.: Boron esters as tunable anion carriers for non-aqueous batteries electrochemistry. J. Am. Chem. Soc. 132, 3055–3062 (2010)

    Google Scholar 

  17. Zhang, D., Li, R., Huang, T., Yu, A.: Novel composite polymer electrolyte for lithium air batteries. J. Power Sources 195, 1202–1206 (2010)

    Article  Google Scholar 

  18. Zheng, J.P., Liang, R.Y., Hendrickson, M., Plichta, E.J.: Theoretical energy density of Li-air batteries. J. Electrochem. Soc. 155, A432–A437 (2008)

    Article  Google Scholar 

Natriumion und Natrium-Luft

  1. Barpanda, P., Oyama, G., Nishimura, S., Chung, S.-C., Yamada, A.: A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 5, 4358 (2014)

    Article  Google Scholar 

  2. Berthelot, R., Carlier, D., Delmas, C.: Electrochemical investigation of the P2–Na x CoO2 phase diagram. Nat. Mater. 10, 74–80 (2011)

    Article  Google Scholar 

  3. Brandt, K.: Historical development of secondary lithium batteries. Solid State Ionics 69, 173–183 (1994)

    Article  Google Scholar 

  4. Chen, S., Bi, J., Zhao, Y., Yang, L., Zhang, C., et al.: Nitrogen-doped carbon nanocages as efficient metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(41), 5593–5597 (2012)

    Article  Google Scholar 

  5. Chen, Z., Higgins, D., Yu, A., Zhang, L., Zhang, J.: A review on non-precious metal electrocatalysts for PEM fuel cells. Energy Environ. Sci. 4, 3167–3192 (2011)

    Google Scholar 

  6. Datta, D., Li, J., Shenoy, V.B.: Defective graphene as a high-capacity anode material for Na- and Ca-ion batteries. ACS Appl. Mater. Interfaces 6, 1788–1795 (2014)

    Article  Google Scholar 

  7. Ding, F., Xu, W., Graff, G.L., Zhang, J., Sushko, M.L., et al.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013)

    Article  Google Scholar 

  8. Ellis, B.L., Nazar, L.F.: Sodium and sodium-ion energy storage batteries. Current opinion in solid state and materials. Science 16, 168–177 (2012)

    Google Scholar 

  9. Goodenough, J.B., Hong, H.Y.P., Kafalas, J.A.: Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 11, 203–220 (1976)

    Article  Google Scholar 

  10. Hartmann, P., Bender, C.L., Vracar, M., Dürr, A.K., Garsuch, A., Janek, J., Adelhelm, P.: A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat. Mater. 12, 228–232 (2013)

    Article  Google Scholar 

  11. Jache, B., Adelhelm, P.: Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. Angew. Chem. Int. Ed. 53(38), 10169–10173 (2014)

    Article  Google Scholar 

  12. Janek, J., Adelhelm, P.: Zukunftstechnologien. In: Korthauer, R. (Hrsg.) Handbuch Lithium-Ionen-Batterien, Kap. 16, S. 199–217. Springer, Berlin (2013)

    Chapter  Google Scholar 

  13. Komaba, S., Murata, W., Ishikawa, T., Yabuuchi, N., Ozeki, T., Nakayama, T., Ogata, A., Gotoh, K., Fujiwara, K.: Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 21, 3859–3867 (2011)

    Article  Google Scholar 

  14. Palomares, V., Casas-Cabanas, M., Castillo-Martínez, E., Han, M.H., Rojo, T.: Update on Na-based battery materials. A growing research path. Energy Environ. Sci. 6, 2312–2337 (2013)

    Google Scholar 

  15. Peled, E., Golodnitsky, D., Mazor, H., Goor, M., Avshalomov, S.: Parameter analysis of a practical lithium- and sodium-air electric vehicle battery. J. Power Sources 196, 6835 (2011)

    Article  Google Scholar 

  16. Vesborg, P.C.K., Jaramillo, T.F.: Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012)

    Article  Google Scholar 

  17. Wenzel, S., Hara, T., Janek, J., Adelhelm, P.: Room-temperature sodium-ion batteries: improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4, 3342 (2011)

    Article  Google Scholar 

  18. Yamamoto, T., Nohira, T., Hagiwara, R., Fukunaga, A., Sakai, S., Nitta, K., Inazawa, S.: Charge-discharge behavior of tin negative electrode for a sodium secondary battery using intermediate temperature ionic liquid sodium bis(fluorosulfonyl)amide-potassium bis(fluorosulfonyl)amide. J. Power Sources 217, 479–484 (2012)

    Article  Google Scholar 

Festkörperbatterien

  1. Buschmann, H., Berendts, S., Mogwitz, B., Janek, J.: Lithium metal electrode kinetics and ionic conductivity of the solid lithium ion conductors Li7La3Zr2O12 and Li\({}_{7-x}\)La3Zr\({}_{2-x}\)Ta x O12 with garnet-type structure. J. Power Sources 206, 236–244 (2012)

    Article  Google Scholar 

  2. Fergus, J.W.: Ceramic and polymeric solid electrolytes for lithium-ion batteries. J. Power Sources 195, 4554–4569 (2010)

    Article  Google Scholar 

  3. Golodnitsky, D.: Electrolytes: single lithium ion conducting polymers. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 5, S. 112. Elsevier, Amsterdam (2009)

    Chapter  Google Scholar 

  4. Hartmann, P., Leichtweiss, Th., Busche, M.R., Schneider, M., Reich, M., Sann, J., Adelhelm, Ph., Janek, J.: Degradation of NASICON-type materials in contact with lithium metal: formation of mixed conducting interphases (MCI) on solid electrolytes. J. Phys. Chem. C 117(41), 21064–21074 (2013)

    Article  Google Scholar 

  5. Ma, Ch., Rangasamy, E., Liang, Ch., Sakamoto, J., More, K.L., Chi, M.: Excellent stability of a lithium-ion-conducting solid electrolyte upon reversible Li+/H+ exchange in aqueous solutions. Angew. Chem. 127(1), 131–135 (2015)

    Article  Google Scholar 

  6. Meziane, R., Bonnet, J.-P., Courty, M., Djellab, K., Armand, M.: Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 57, 14–19 (2011)

    Article  Google Scholar 

  7. Ohta, S., Kobayashi, T., Asaoka, T.: High lithium ionic conductivity in the garnet-type oxide Li\({}_{{7-X}}\) La3(Zr\({}_{{2-X}}\), NbX)O12 (X = 0–2). J. Power Sources 196, 3342–3345 (2011)

    Article  Google Scholar 

  8. Ohta, S., Komagata, S., Seki, J., Saeki, T., Morishita, Sh., Asaoka, T.: All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. J. Power Sources 238, 53 (2013)

    Article  Google Scholar 

  9. Wang, L., Goodenough, J.B.: DOE Vehicle Technologies Annual Merit Review Meeting, May 14–18 (2012)

    Google Scholar 

  10. Jones, K.S.: Ceramic Leadership Summit. American Ceramic Society, Baltimore, Aug 1–3, 2011

    Google Scholar 

Metall-Luft und Metalllion

  1. Arai, H.: Metal storage/metal air (Zn, Fe, Al, Mg). In: Moseley, P.T., Garche, J. (Hrsg.) Electrochemical Energy Storage for Renewable Sources and Grid Balancing, Kap. 18, S. 337–344. Elsevier, Amsterdam (2015)

    Chapter  Google Scholar 

  2. Arthur, T.S., Singh, N., Matsui, M.: Electrodeposited Bi, Sb and B\({}_{\mathrm{i}1-x}\)Sb x alloys as anodes for Mg-ion batteries. Electrochem. Commun. 16, 103–106 (2012)

    Article  Google Scholar 

  3. Aurbach, D., Weissman, I., Gofer, Y., Levi, E.: Nonaqueous magnesium electrochemistry and its application in secondary batteries. Chem. Rec. 3, 61–73 (2003)

    Article  Google Scholar 

  4. Aurbach, D., Lu, Z., Schechter, A., Gofer, Y., Gizbar, H., Turgeman, R., et al.: Prototype systems for rechargeable magnesium batteries. Nature 407, 724–727 (2000)

    Article  Google Scholar 

  5. (a) Doe, R.E., Han, R., Hwang, J., Gmitter, A., Shterenberg, I., Yoo, H.D., et al.: Novel electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries. Chem. Commun. 50, 243–245 (2014) (b) WO/2013/096827A1 (2013), US 20130252112 (2013), US 20130252114 (2013)

    Google Scholar 

  6. Gofer, Y., Chusid, O., Aurbach, D., Gan, R.: Magnesium batteries. In: Garche, J., et al. (Hrsg.) Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 285–301. Elsevier, Amsterdam (2009)

    Chapter  Google Scholar 

  7. Jörissen, L.: Secondary batteries, metal-air systems: bifunctional oxygen electrodes. In: Encyclopedia of Electrochemical Power Sources, Bd. 4, S. 356. Elsevier, Amsterdam (2009)

    Book  Google Scholar 

  8. Kakibe, T., Hishii, J., Yoshimoto, N., Egashira, M., Morita, M.: Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries. J. Power Sources 203, 195–200 (2012)

    Article  Google Scholar 

  9. Kim, H.S., Arthur, T.S., Allred, G.D., Zajicek, J., Newman, J.G., Rodnyansky, A.E., et al.: Structure and compatibility of a magnesium electrolyte with a sulphur cathode. Nat. Commun. 2, 427 (2011)

    Article  Google Scholar 

  10. Levi, E., Gofer, Y., Aurbach, D.: On the way to rechargeable Mg batteries: The challenge of new cathode materials. Chem. Mater. 22(3), 860–868 (2010)

    Article  Google Scholar 

  11. Muldoon, J., Bucur, C.B., Oliver, A.G., Sugimoto, T., Matsui, M., Kim, H.S., et al.: Electrolyte roadblocks to a magnesium rechargeable battery. Energy Environ. Sci. 5, 5941–5950 (2012)

    Google Scholar 

  12. Saha, P., Datta, M.K., Velikokhatnyi, O.I., Manivannan, A., Alman, D., Kumta, P.N.: Rechargeable magnesium battery: current status and key challenges for the future. Prog. Mater. Sci. 66, 1–86 (2014)

    Article  Google Scholar 

  13. Singh, N., Arthur, T.S., Ling, C., Matsui, M., Mizuno, F.: A high energy-density tin anode for rechargeable magnesium-ion batteries. Chem. Commun. 49, 149–151 (2013)

    Article  Google Scholar 

  14. Wang, W., Jiang, B., Xiong, W., Sun, H., Lin, Z., et al.: A new cathode material for super-valent battery based on aluminium ion intercalation and deintercalation. Sci. Rep. 3(3383) (2013)

    Google Scholar 

  15. (a) Yu, X., Licht, S.: Advances in Fe(VI) charge storage, Part I. Primary alkaline super-iron batteries. J. Power Sources 171, 966–980 (2007) b) Advances in Fe(VI) charge storage: Part II. Reversible alkaline super-iron batteries and nonaqueous super-iron batteries. J. Power Sources 171(2), 1010–1022 (2007)

    Google Scholar 

  16. Zhang, R., Yu, X., Nam, K.-W., Ling, C., Arthur, T.S., Song, W., Knapp, A.M., Ehrlich, S.N., Yang, X.-Q., Matsui, M.: α-MnO2 as a cathode material for rechargeable Mg batteries. Electrochem. Commun. 23, 110–113 (2012)

    Article  Google Scholar 

Halogenid- und Anionenbatterien

  1. Placke, T., Fromm, O., Lux, S.F., Bieker, P., Rothermel, S., Meyer, H.W., Passerini, S., Winter, M.: Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for high performance dual-ion cells. J. Electrochem. Soc. 159(11), A1755–A1765 (2012)

    Article  Google Scholar 

  2. Reddy, A., Fichtner, M.: Batteries based on fluoride shuttle. J. Mater. Chem. 21, 17059–17062 (2011)

    Article  Google Scholar 

  3. Zhao, X., Ren, Sh., Bruns, M., Fichtner, M.: Chloride ion battery: a new member in the rechargeable battery family. J. Power Sources 245, 706–711 (2014)

    Article  Google Scholar 

Phasenumwandlungsmaterialien

  1. Amatucci, G.G., Pereira, N.: Fluoride based electrode materials for advanced energy storage devices. J. Fluorine Chem. 128, 243–262 (2007)

    Article  Google Scholar 

  2. Bruce, P.G., Scrosati, B., Tarascon, J.-M.: Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 47, 2930–2946 (2008)

    Article  Google Scholar 

  3. Cabana, J., Monconduit, L., Larcher, D., Palacín, M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170–E192 (2010)

    Article  Google Scholar 

  4. Poizot, P., Laruelle, S., Grugeon, S., Dupont, L., Tarascon, J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496–499 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kurzweil Prof. Dr. .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Kurzweil, P. (2015). Hochenergiebatterien nach Lithium-Ion. In: Elektrochemische Speicher. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-10900-4_5

Download citation

Publish with us

Policies and ethics