Reconfigurable Hardware-Based Acceleration for Machine Learning and Signal Processing

Chapter

Abstract

Certain application areas of signal processing and machine learning, such as robotics, impose technical limitations on the computing hardware, which make the use of generic processors unfeasible. In this paper we propose a framework for the development of dataflow accelerators as a possible solution. The approach is based on model based development and code generation to allow a rapid development of the accelerators and perform a functional verification of the overall system.

Keywords:

Robotics, Embedded Systems, FPGA, Hardware Acceleration, Dataflow 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graf, H.P., Cadambi, S., Durdanovic, I., Jakkula, V., Sankaradass, M., Cosatto, E., Chakradhar, S.T.: A massively parallel digital learning processor. In: NIPS. (2008)Google Scholar
  2. 2.
    Zito, T., Wilbert, N., Wiskott, L., Berkes, P.: Modular toolkit for Data Processing (MDP): a Python data processing framework. Frontiers in Neuroinformatics 2(8) (2008)Google Scholar
  3. 3.
    Krell, M.M., Straube, S., Seeland, A., Wohrle, H., Teiwes, J., Metzen, J.H., Kirchner, E.A., Kirchner, F.: pySPACE – a signal processing and classification environment in Python. Frontiers in Neuroinformatics 7(40) (2013)Google Scholar
  4. 4.
    Flagg, M.: Dataflow principles applied to real-time multiprocessing. In: COMP- CON Spring’89. Thirty-Fourth IEEE Computer Society International Conference: Intellectual Leverage, Digest of Papers., IEEE (1989)Google Scholar
  5. 5.
    Folgheraiter, M., Kirchner, E.A., Seeland, A., Kim, S.K., Jordan, M., Woehrle, H., Bongardt, B., Schmidt, S., Albiez, J., Kirchner, F.: A multimodal brain-arm interface for operation of complex robotic systems and upper limb motor recovery. In: Proc. of the 4th International Conference on Biomedical Electronics and Devices (BIODEVICES-11), Rome (2011)Google Scholar
  6. 6.
    Kirchner, E.A., Albiez, J., Seeland, A., Jordan, M., Kirchner, F.: Towards assistive robotics for home rehabilitation. In Chimeno, M.F., Sole-Casals, J., Fred, A., Gamboa, H., eds.: Proceedings of the 6th International Conference on Biomedical Electronics and Devices (BIODEVICES-13), Barcelona, ScitePress (2013)Google Scholar
  7. 7.
    Seeland, A., Woehrle, H., Straube, S., Kirchner, E.A.: Online movement prediction in a robotic application scenario. In: 6th International IEEE EMBS Conference on Neural Engineering (NER), San Diego, California (2013)Google Scholar
  8. 8.
    Langosz, M., von Szadkowski, K., Kirchner, F.: Introducing particle swarm optimization into a genetic algorithm to evolve robot controllers. In: Proceedings of the 16th Annual Conference on Genetic and Evolutionary Computation. GECCO ’14, ACM (2014)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.German Research Center for Artificial IntelligenceDFKI Bremen, Robotics Innovation CenterBremenGermany
  2. 2.Faculty 3 – Mathematics and Computer Science, Robotics LabUniversity of BremenBremenGermany

Personalised recommendations