Investigating Mathematical Beliefs by Using a Framework from the History of Mathematics

  • Lenni Haapasalo
  • Bernd Zimmermann
Part of the Freiburger Empirische Forschung in der Mathematikdidaktik book series (FEFMD)


In the theoretical part of the article a framework of eight activities and motives is sketched (calculate, apply, construct, argue, order, find, play, evaluate), which proved to be successful along the history of mathematics. Furthermore, some arguments are presented and discussed why this framework is useful for studying mathematical beliefs. The empirical part is about two case studies using this network carried out in Joensuu (FIN) and Jena (GER). The goal of the first study was to compare mathematical beliefs of student mathematics teachers in Finland and Germany. The second part is about the influence of using a handheld calculator on the belief of a pupil. The first study reveals that neither in Finland nor in Germany the school mathematics seems to give much support for these activities, in Finland university mathematics even less. The only exception is calculating, for which the both institutions seem to give overdose. On the other hand, the finding of the second study that voluntary playing with progressive technology, even during a short period of time, might shift mathematical beliefs in a positive way.


Mathematics Teacher Student Teacher Summer Holiday Empirical Part German Student 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bogdan, R. J. (ed. 1986). Belief. Form, Content and Function. Oxford: Clarendon Press.Google Scholar
  2. Crombie, A. C. 1994. Styles of Scientific Thinking in the European Tradition: The History of Argument and Explanation Especially in the Mathematical and Biomedical Sciences and Arts. 3 Volumes. London: Duckworth.Google Scholar
  3. Cukrowicz, J.; Zimmermann, B. 2000. MatheNetz Ausgabe N; Klasse 7-11; Gymnasien. Braunschweig: WestermannGoogle Scholar
  4. Eronen, L., Haapasalo, L. 2010. Making Mathematics through Progressive Technology. In: B. Sriraman, C. Bergsten, S. Goodchild, G. Palsdottir. B. Dahl and L. Haapasalo (Eds.), The First Sourcebook on Nordic Research in Mathematics Education. Charlotte, NC: Information Age Publishing, 701–710.Google Scholar
  5. Frank, M. L. 1985. Mathematical Beliefs and Problem Solving. Diss. Purdue Univ., UMI 8606543.Google Scholar
  6. Haapasalo, L. 2007. Adapting Mathematics Education to the Needs of ICT. The Electronic Journal of Mathematics and Technology, 1 (1), 1-10. Internet:
  7. Haapasalo L. & Eronen L. 2011. Looking Back and Forward on the Light of Survey Studies Related to Mathematics Teacher Education. In: H. Silfverberg & J. Joutsenlahti (Eds.), Integrating Research into Mathematics and Science Education in the 2010s. Proceedings of Annual Symposium of the Finnish Mathematics and Science Education Research Association, 67–84.Google Scholar
  8. Haapasalo, L. & Eskelinen, P. 2013. Elementary level trainee teachers’ views of teaching mathematics and the usage of technology at the beginning of their didactical courses. In M. Hähkiöniemi, H. Leppäaho, P. Nieminen & J. Viiri (eds.), Proceedings of the annual conference of Finnish Mathematics and Science Education Research Association (pp. 25–33). University of Jyväskylä, Department of Teacher Education, Research report ••xx. Jyväskylä: University Press.Google Scholar
  9. Haapasalo, L. & Hvorecky, J. 2011. Evaluating the Zimmermann Octagon within Research Standards. In: T. Fritzlar, L. Haapasalo, F. Heinrich & H. Rehlich (eds.). Konstruktionsprozesse und Mathematikunterricht. Hildesheim: Franzbecker, 145–152.Google Scholar
  10. Haapasalo, L. & Samuels, P. 2011. Responding to the Challenges of Instrumental Orchestration through Physical and Virtual Robotics. Computers & Education 57 (2), 1484-1492. Internet:
  11. Haapasalo, L. & Zimmermann, B. 2011. Redefining school as pit stop: It is the free time that counts. In: W-C Yang, M. Majewski, T. de Avis & E. Karakirik (Eds.) Integration of technology into mathematics education: past, present and future. Proceedings of the Sixteenth Asian technology Conference in Mathematics, 19-23 September in Bolu, Turkey, 133–150.Google Scholar
  12. Hannula, M. S., Pipere, A., Lepik, M., Kislenko K. 2013. Mathematics Teachers’ Beliefs and Schools’ Micro-Culture as Predictor of constructivist Practices in Estonia, Latvia and Finland. In: Lindmeier, A. M. & Heinze, A. (Eds.). Proceedings of the 37th Conference of the International Group for the Psychology of Mathematics Education, Vol. 2, pp. 433–440. Kiel, Germany: PME.Google Scholar
  13. Jahnke, Th. 2010. Vom mählichen Verschwinden des Fachs aus der Mathe- matikdidaktik. (About the slowly vanishing of the subject out of mathematics education). In: Lindmeier, A., Ufer, S. Beiträge zum Mathematikunterricht 2010. München, 441–444.Google Scholar
  14. Kießwetter, K., Zimmermann, B. 1987. Modellierung und Initiierung von Lernprozessen bei der selbständigen Betätigung von Schülern in (elementar-) mathematischen Problemfeldern. (Modelling and initiating of learning processes involved with independent activities of pupils in (elementary) mathematical problemfields. Research- application, adopted and conducted in Finland by Erkki Pehkonen after acceptation by the Finish Academy of Science. Cf. Pehkonen/Zimmermann 1990.Google Scholar
  15. Opetushallitus (Finish School-board) 2004. Perusopetuksen opetussuunitelman perusteet 2004 (Fundamental guidelines of the Finish Curriculum for the instruction at the comprehensive schools).Google Scholar
  16. Pehkonen, E., Zimmermann, B. 1990. Probleemakentät Matematiikkan Opetuksessa ja niiden Yhtetys Opetuksen ja Oppilaiden Motivaation Kehittämisen. Osa 1: Teoreettinen tausta ja tutkimus-asetelma. (Problemfields in Mathematics Instruction and their Relation to the Development of Instruction and Pupils' Motivation. Part I. Theoretical Framework and Research Objectives). Helsinki: Helsingin yliopiston oppetajankoulutuslaitos, Tutkimuksia 86, 105.Google Scholar
  17. Pehkonen, E., & Lepmann, L. 1994. Teachers’ conceptions about mathematics teaching in comparison (Estonia - Finland). In: M. Ahtee & E. Pehkonen (Eds.), Constructivist viewpoints for school teaching and learning in mathematics and science. Helsinki: University of Helsinki, 105–110.Google Scholar
  18. Schoenfeld, A. H. 1985. Mathematical Problem Solving. Orlando: Academic Press.Google Scholar
  19. Skemp, R. R. 1979. Intelligence, Learning, Action. Chichester: Wiley.Google Scholar
  20. Spengler, O. 1988. Der Untergang des Abendlandes. (The Decline of the West). 9 th printing. München: DTV 838.Google Scholar
  21. Thompson, A. G. 1985: Teacher’s Conceptions of Mathematics and the Teaching of Problem Solving. In: Silver, E. A. (ed.): Teaching and Learning Mathematical Problem Solving: Multiple Research Perspectives. Hillsdale: Lawrence Erlbaum Associates, 281–294.Google Scholar
  22. Thompson, A. G. 1992. Teacher’s Beliefs and Conceptions: A Synthesis of the Research. In: Grouws, D. A. (ed.): Handbook of Research on Mathematics Teaching and Learning. A Project of the NCTM. New York: Macmillan Publishing Company, 127–146.Google Scholar
  23. Wilder, R. L. 1981. Mathematics as a Cultural System. Oxford: Pergamon Press.Google Scholar
  24. Yackel, E.; Carter, C. S. 1989. Beliefs, Emotional Acts and Mathematical Activity: A Case Study of Change. Poster presented at the 13th Conference of the International Group for the Psychology of Mathematics Education, Paris, 244–251.Google Scholar
  25. Zimmermann, B. 1979. Einige Vorbemerkungen zu einer Metatheorie der Mathematikdidaktik. In: Beiträge zum Mathematikunterricht 1979. Hannover: Schroedel.Google Scholar
  26. Zimmermann, B. 1981. Versuch einer Analyse von Strömungen in der Mathematikdidaktik. In: ZDM 1/1981, 44–53.Google Scholar
  27. Zimmermann, B. 1983. On some Trends in German Mathematics Education. ERIC, ED 221 372, Ohio: Columbus. InvestigatingGoogle Scholar
  28. Zimmermann. B. 1987. Suuntauksia Saksalaisessa Matematiikkassa (About some Trends in German Mathematics Education). In: Dimensio 8/1987, 10–12.Google Scholar
  29. Zimmermann, B. 1990. Heuristische Strategien in der Geschichte der Mathematik. In: M. Glatfeld, M. (Ed.). Finden, Erfinden, Lernen. Zum Umgang mit Mathematik unter heuristischem Aspekt. Frankfurt a. M.: Peter Lang, 130–164.Google Scholar
  30. Zimmermann, B. 1991. Heuristik als ein Element mathematischer Denk- und Lernprozesse. Fallstudien zur Stellung mathematischer Heuristik im Bild von Mathematik bei Lehrern und Schülern sowie in der Geschichte der Mathematik. University of Hamburg: Habilitation. Internet:
  31. Zimmermann, B. 1997. Vorstellungen über Mathematik und Mathematikunter- richt bei Lehrerinnen und Lehrern. (Teachers' Conceptions about Mathematics and Mathematics Instruction.) In: Beiträge zum Mathematikunterricht, 576–579.Google Scholar
  32. Zimmermann, B. 1997a. On a Study of Teacher Conception of Mathematics Instruction and some Relations to TIMSS. In: Törner, G. (ed.): Current State of Research on Mathematical Beliefs. Proceedings of the MAVI-Workshop University of Duisburg, April 11-14, 1997, p. 117–126.Google Scholar
  33. Zimmermann, B. 1998. On Changing Patterns in the History of Mathematical Beliefs. In: G. Törner (Ed.): Current State of Research on Mathematical Beliefs VI. Proceedings of the MAVI-Workshop University of Duisburg, 107–117.Google Scholar
  34. Zimmermann, B. 1999. Kreativität in der Geschichte der Mathematik (Creativity in the history of Mathematics). In: B. Zimmermann, G. David, T. Fritzlar, and M. Schmitz (Eds.) Kreatives Denken und Innovationen in mathematischen Wissenschaften. Jenaer Schriften zur Mathematik und Informatik. Math/Inf/99/29, 227–245. Internet:
  35. Zimmermann, B. 2002. Vorstellungen über Mathematik und Mathematikunter- richt von Lehrerinnen und Lehrern verschiedener Schularten. (Conceptions about Mathematics and Mathematics Instruction from Teachers of different School Types.) In: Der Mathematikunterricht. Heft 4/5 2002, 7–25Google Scholar
  36. Zimmermann, B. 2003. On the Genesis of Mathematics and Mathematical Thinking - a Network of Motives and Activities Drawn from the History of Mathematics. In L. Haapasalo & K Sormunen (Eds.) Towards Meaningful Mathematics and Science Education. Bulletins of the Faculty of Education 86, 29–47.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  1. 1.University of Eastern FinlandJoensuuFinland
  2. 2.Friedrich Schiller University of JenaJenaGermany

Personalised recommendations