IQM-Reifegradmodell für die Bewertung und Verbesserung des Information Lifecycle Management Prozesses

  • Saša Baškarada
  • Marcus Gebauer
  • Andy Koronios
  • Jing Gao
Chapter

Zusammenfassung

Heutige Organisationen produzieren und speichern mehr Informationen als je zuvor. Der resultierende Informationsüberfluss, zusammen mit einem Mangel an Qualitätssicherung für das Information Lifecycle Management, führt zu einem unsicheren Status der Informationsqualität in vielen Organisationen. Weiterhin hat sich herausgestellt, dass das Bewerten, Verbessern und Steuern der Informationsqualität ein offenkundig schwieriges Unterfangen ist. Dieses Kapitel stellt ein Modell zur Bewertung und Verbesserung der Information Quality Management Capability Maturity (IQM-Reifegrad) vor. Es wird ein Satz von Kriterien vorgestellt, der aus Literaturrecherche und Fallstudien abgeleitet wurde. Die Reifegradindikatoren werden validiert und in einem mehrstufigen Reifegradmodell durch eine Delphi-Studie gruppiert. Das abgeleitete IQM-Reifegradmodell hilft Organisationen ihre bestehenden Praktiken im IQM zu bewerten und potentielle Lücken und Verbesserungsstrategien zu ermitteln.

Literatur

  1. Agarwal, R. & Venkatesh, V.: Assessing a firm’s web presence: A heuristic evaluation procedure for the measurement of usability. In: Information Systems Research, 2. Jg., 2002, Heft 13, S. 168–178.Google Scholar
  2. Avery, J.: Information Theory and Evolution. World Scientific Publishing Co. Pte. Ltd., Singapore, 2003.Google Scholar
  3. Ballou, D. P. & Pazer, H. L.: Modeling Data and Process Quality in Multi-Input, Multi-Output Information Systems. In: Management Science, 3. Jg., 1985, Heft 31, S. 150–162.Google Scholar
  4. Bardecki, M. J.: Participants’ Response to the Delphi Method: An Attitudinal Perspective. In: Technological Forecasting and Social Change, 3. Jg., 1984, Heft 25, S. 281–292.Google Scholar
  5. Baškarada, S., Koronios, A. & Gao, J.: Towards a Capability Maturity Model for Information Quality Management: A TDQM Approach. In: 11th International Conference on Information Quality (ICIQ-06), 2006, MIT, Cambridge, Massachusetts, USA, November 10– 12.Google Scholar
  6. Benarie, M.: Delphi and Delphi Like Approaches with Special Regards to Environmental Standard Setting. In: Technological Forecasting and Social Change, 2. Jg., 1988, Heft 33, S. 149–158.Google Scholar
  7. Caballero, I., Gómez, Ó. & Piattini, M.: Getting Better Information Quality by Assessing and Improving Information Quality Management. In: The Ninth International Conference on Information Quality (ICIQ-04), 2004, MIT, Cambridge, Massachusetts, November 5–7.Google Scholar
  8. Cho, Y. Y., Jeong, G. H. & Kim, S. H.: A Delphi Technology Forecasting Approach Using a Semi-Markov Concept. In: Technological Forecasting and Social Change, Jg., 1991, Heft 40, S. 273–287.Google Scholar
  9. CMMI: Capability Maturity Model® Integration (CMMI), Version 1.1. Carnegie Mellon Software Engineering Institute, Pittsburgh, 2002.Google Scholar
  10. Crosby, P.: Quality is Free. McGraw-Hill, New York, 1979.Google Scholar
  11. Dalkey, N. C.: Delphi Method: An Experimental Study of Group Opinion. The Rand Corporation, Chicago, IL, 1969.Google Scholar
  12. Day, G. S. & Aaker, D. A.: Marketing Research. John Wiley & Sons, New York, NY, 1990.Google Scholar
  13. Deitz, T.: Methods for Analysing Data from Delphi Panels. In: Technological Forecasting and Social Change, Jg., 1987, Heft 31, S. 79–85.Google Scholar
  14. Delbecq, A. L., Ven, A. H. V. d. & Gustafson, D. H.: Group Techniques for Program Planning: A Guide to Nominal Group Delphi Process. Scott-Foresman, Glenview, IL, 1975.Google Scholar
  15. DeLoe, R. C.: Explorig Complex Policy Questions Using The Policy Delphi: A Multi-Round, Interactive Survey Method. In: Applied Geography, 1. Jg., 1995, Heft 15, S. 53–68.Google Scholar
  16. Deming, W. E.: Out of the Crisis. MIT Press, Cambridge, 1982.Google Scholar
  17. English, L. P.: Improving Data Warehouse and Business Information Quality. Wiley Computer Publishing, New York, Chichester, Weinheim, Brisbane, Singapore, Toronto, 1999.Google Scholar
  18. Feigenbaum, A. V.: Total Quality Control. McGraw-Hill, New York, NY, 1986.Google Scholar
  19. Fontana, A. & Frey, J. H.: Interviewing: The Art of Science. Sage, London, 1994.Google Scholar
  20. Fowles, J.: Handbook of Futures Research. Greenwood Press, London, 1978.Google Scholar
  21. Giannoccaro, A., Shanks, G. & Darke, P.: Stakeholder Perceptions of Data Quality in a Data Warehouse Environment. In: Australian Computer Journal, 4. Jg., 1999, Heft 31, S. 110–117.Google Scholar
  22. <http://www.sims.berkeley.edu/how-much-info-2003> (Zugriff am 25th of August 2006), 2003.Google Scholar
  23. Ishikawa, K.: Guide to Quality Control. Asian Productivity Organization, Tokyo, 1986.Google Scholar
  24. Juran, J. M.: Quality Control Handbook. McGraw-Hill, New York, NY, 1974.Google Scholar
  25. Juran, J. M.: Juran on Planing for Quality. Free Press, New York, 1988.Google Scholar
  26. Kaynak, E. & Macaulay, J. A.: The Delphi Technique in the Measurement of Tourism Marketing Potential. In: Tourism Management, Jg., 1984, Heft, S. 87–101.Google Scholar
  27. Keeney, S., Hasson, F. & McKenna, H. P.: A Critical Review of the Delphi Technique as a Research Methodology for Nursing. In: International Journal of Nursing Studies, Jg., 2001, Heft 38, S. 195–200.Google Scholar
  28. Kyung-seok, R.: A study on data quality management maturity model. In: Advanced Communication Technology, 2005, ICACT 2005. The 7th International Conference on Advanced Communications Technology, 2005, S. 598–603 Vol. 1.Google Scholar
  29. Logan, D. & Newman, D.: From IM to EIM: An Adoption Model. Gartner Research, 2006.Google Scholar
  30. Martino, J. P.: Technological Forecasting for Decision Making. American Elsevier, New York, NY, 1983.Google Scholar
  31. McEliece, R. J.: The Theory of Information and Coding. Cambridge University Press, Cambridge, UK, 2002.Google Scholar
  32. Miller, M. M.: Enhancing Regional Analysis with the Delphi Method. In: Review of Regional Studies, 2. Jg., 1993, Heft 23, S. 191–212.Google Scholar
  33. Mitchell, V. M. & McGoldrick, P. J.: The Role of Geodemographics in Segmenting and Targeting Consumer Markets: A Delphi Study. In: European Journal of Marketing, Jg., 1994, Heft 28, S. 54–72.Google Scholar
  34. Motwani, J.: Measuring Critical Factors of TQM. In: Measuring Business Excellence, 2. Jg., 2001, Heft 5, S. 27–30.Google Scholar
  35. Paliwoda, S. J.: Predicting the Future using Delphi. In: Management Decision, 1. Jg., 1983, Heft 21, S. 31–38.Google Scholar
  36. Parente, F. J., Anderson, J. K., Myers, P. & O’Brin, T.: An Examination of Factors Contributing to Delphi Accuracy. In: Journal of Forecasting, 2. Jg., 1984, Heft 3, S. 173–182.Google Scholar
  37. Parke, H. W. & Wormell, D. E. W.: The Delphi Oracle. Basil Blackwell, Oxford, 1956.Google Scholar
  38. Paulk, M. C., Curtis, B., Chrissis, M. B. & Weber, C. V.: Capability Maturity Model for Software, Version 1.1. Software Engineering Institute/Carnegie Mellon University, 1993.Google Scholar
  39. Prendergast, G. & Marr, N.: Towards a Branchless Banking Society? In: International Journal of Retail & Distribution Management, 2. Jg., 1994, Heft 22, S. 18–26.Google Scholar
  40. Radice, R. A., Harding, J. T., Munnis, P. E. & R.W. Phillips: A Programming Process Study. In: IBM Systems Journal, 2. Jg., 1985, Heft 24, S. 297–307.Google Scholar
  41. Rowe, G. & Wright, G.: The Delphi Technique as a Forecasting Tool: Issues and Analysis. In: International Journal of Forecasting, Jg., 1999, Heft 15, S. 353–375.Google Scholar
  42. Rowe, G., Wright, G. & Bolger, F.: Delphi: A Re-evaluation of Research and Theory. In: Technological Forecasting and Social Change, Jg., 1991, Heft 39, S. 235–251.Google Scholar
  43. Shannon, C. E.: A Mathematical Theory of Communication. In: The Bell Systems Technical Journal, Jg., 1948, Heft 27, S. 379–423, 623–656.Google Scholar
  44. Shewhart, W. A.: The Application of Statistics as an Aid in Maintaining Quality of a Manufactured Product. In: Journal of the American Statistical Association, Jg., 1925, Heft 20, S. 546–548.Google Scholar
  45. Shewhart, W. A.: Economic Control of Quality of Manufactured Product. van Nostrand, New York, NY, 1931.Google Scholar
  46. Stephenson, B. Y.: Management by Information. In: Information Strategy: The Executive’s Journal, 4. Jg., 1985, Heft 1, S. 26–32.Google Scholar
  47. Strong, D. M., Lee, Y. W. & Wang, R. Y.: Decision Support for Exception Handling and Quality Control in Office Operations. In: Decision Support Systems, 3. Jg., 1992, Heft 8, S. 217–227.Google Scholar
  48. Strong, D. M., Lee, Y. W. & Wang, R. Y.: Data Quality In Context. In: Communications of the ACM, 5. Jg., 1997, Heft 40, S. 103–110.Google Scholar
  49. Wang, R. Y. A.: A Product Perspective on Total Data Quality Management. In: Communications of the ACM, 2. Jg., 1998, Heft 41, S. 58–65.Google Scholar
  50. Wang, R. Y. & Strong, D.: Beyond Accuracy: What Data Quality Means to Data Consumers. In: Journal of Management Information Systems, 4. Jg., 1996, Heft 12, S. 5–34.Google Scholar
  51. Woundenberg, F.: An Evaluation of Delphi. In: Technological Forecasting and Social Change, Jg., 1991, Heft 40, S. 131–150.Google Scholar
  52. Zeithaml, V. A., Parasuraman, A. & Berry, L. L.: Delivering Quality Service: Balancing Customer Perception and Expectations. Free Press, New York, NY, 1990.Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • Saša Baškarada
    • 1
  • Marcus Gebauer
    • 2
  • Andy Koronios
    • 1
  • Jing Gao
    • 1
  1. 1.AdelaideSouth Australia
  2. 2.Department: IT-GMOHannover Re AGHannoverDeutschland

Personalised recommendations