Instabilitäten und turbulente Strömungen

Chapter
Part of the Springer Reference Technik book series (SRT)

Zusammenfassung

Das Kapitel Instabilitäten und turbulente Strömungen ist Teil des Lehrbuches und Nachschlagewerkes H. Oertel jr. (Hrsg.) Prandtl-Führer durch die Strömungslehre. Es werden ergänzend zu Prandtls Grundlagenkapitel der Dynamik zäher Flüssigkeiten das Einsetzen der Turbulenz mit der linearen Stabilitätsanalyse zwei- und dreidimensionaler Grenzschichten, der Übergangsbereich zur Turbulenz und der Bereich ausgebildeter Turbulenz mit der Klassifikation turbulenter Strömungen behandelt.Das Kapitel gibt einen Ausblick auf neue Entwicklungen und theoretische Ansätze der komplexen nichtlinearen Wechselwirkungen von kleinen und großen Turbulenzstrukturen und gibt Hinweise auf mögliche Wege zur Entwicklung einer universellen Turbulenztheorie.

Weiterführende Literatur

  1. Alfredsson, P.H., Bakchinov, A.A., Kozlov, V.V., Matsubara, M.: Laminar-Turbulent transition at a high level of a free stream turbulence. In: Duck, P.W., Hall, P. (Hrsg.) Proceedings IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, Bd. 35, S. 423–436. Kluwer, Dordrecht (1996)CrossRefGoogle Scholar
  2. Barenghi, C.F., Donnelly, R.J., Vinen, W.F.: Quantized Vortex Dynamics and Superfluid Turbulence. Springer, Berlin/Heidelberg/New York (2001)CrossRefMATHGoogle Scholar
  3. Barenblatt, G.I.: Scaling laws for fully developed Turbulent Shear flows. Part 1. Basic hypothesis and analysis. J. Fluid Mech. 248, 513–520 (1993)Google Scholar
  4. Batchelor, G.K.: Recent developments in turbulence research. In: Levy, H. (Hrsg.) Proceedings of the 7th International Congress for Applied Mechanics, London (1948)Google Scholar
  5. Batchelor, G.K.: Computation of the energy spectrum in homogeneous two-dimensional turbulence. Phys. Fluids 12, II, II–233–II–239 (1969)Google Scholar
  6. Batchelor, G.K., Townsend, A.A.: The nature of turbulent motion at large wave numbers. In: Proceedings of the Royal Society of London A, Bd. 199, S. 238–255. Royal Society, London (1949)Google Scholar
  7. Boffetta, G.: Energy and enstrophy fluxes in the double cascade of two-dimensional turbulence. J. Fluid Mech. 589, 253–260 (2007)CrossRefMATHGoogle Scholar
  8. Boiko, A.V., Grek, G.R., Dovgal, A.V., Kozlov, V.V.: The Origin of Turbulence in Near-Wall Flows. Springer, Berlin/Heidelberg (2002)CrossRefMATHGoogle Scholar
  9. Borgas, M.S.: A comparison of intermittent models in turbulence. Phys. Fluids A 4, 2055–2061 (1992)CrossRefMATHGoogle Scholar
  10. Brown, F.N.M.: A combined visual and hot-wire anemometer investigation of boundary-layer transition. AIAA J. 6 (1), 29–36 (1957)Google Scholar
  11. Carnevale, G.F., McWilliams, J.C., Pomeau, Y., Weiss, J.B., Young, W.R.: Evolution of vortex statistics in two-dimensional turbulence. Phys. Rev. Lett. 66, 2735–2737 (1991)CrossRefGoogle Scholar
  12. Champagne, F.H.: The fine-scale structure of the turbulent velocity field. J. Fluid Mech. 86, 67–108 (1978)CrossRefGoogle Scholar
  13. Chandrasekhar, S.: Hydrodynamics and Hydromagnetic Stability. Clarendon Press, Oxford (1961)MATHGoogle Scholar
  14. Chen, S., Doolen, G.D.: Lattice Boltzmann method for fluid flow. Annu. Rev. Fluid Mech. 23, 539–600 (1991)CrossRefGoogle Scholar
  15. Chorin, A.J.: Vorticity and Turbulence. Springer, Berlin/Heidelberg/New York (1994)CrossRefMATHGoogle Scholar
  16. Drazin, P.G., Reid, W.H.: Hydrodynamic Stability. Cambridge University Press, Cambridge/New York (2004)CrossRefMATHGoogle Scholar
  17. Dryden, H.L.: Recent advances in the mechanics of boundary layer flow. Adv. Appl. Mech. 1, 1–40 (1948)MathSciNetCrossRefGoogle Scholar
  18. Emmons, H.W.: The Laminar-Turbulent transition in a boundary layer – Part I. J. Aeronaut. Sci. 18, 490–498 (1951)MathSciNetCrossRefMATHGoogle Scholar
  19. Falco, R.E.: The Production of Turbulence Near a Wall. 80-1356, AIAA (1980)Google Scholar
  20. Falkovich, G., Gawedzki, K., Vertgassola, M.: Particles and fields in fluid turbulence. Rev. Mod. Phys. 73, 913–975 (2001)MathSciNetCrossRefMATHGoogle Scholar
  21. Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19, 25 (1978)MathSciNetCrossRefMATHGoogle Scholar
  22. Frisch, U.: Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press, Cambridge (1995)MATHGoogle Scholar
  23. Frisch, U., Vergassola, M.: A prediction of the multifractal model: the intermediate dissipation range. Europhys. Lett. 14, 439–444 (1991)CrossRefGoogle Scholar
  24. Frisch, U., Sulem, P.L.: Numerical simulation of the inverse cascade in two-dimensional turbulence. Phys. Fluids 27 (8), 1921–1923 (1984)CrossRefMATHGoogle Scholar
  25. Gagne, Y., Castaing, B.: Une Représentation Universelle sans Invariance Globale d’Échelle des Spectres d’Énergie en Turbulence d’Éveloppée. Comptes rendus de l’Académie des Sciences Paris 312, 441 (1991)MATHGoogle Scholar
  26. Gaster, M.: A note on the relation between temporally-increasing and spatially-increasing disturbances in hydrodynamic stability. J. Fluid Mech. 14, 222–224 (1962)MathSciNetCrossRefMATHGoogle Scholar
  27. Gaster, M.: The development of three-dimensional wave packets in a boundary layer. J. Fluid Mech. 32, 173–184 (1968)CrossRefMATHGoogle Scholar
  28. Görtler, H.: Instabilität laminarer Grenzchichten an konkaven Wänden gegenüber gewissen dreidimensionalen Störungen. ZAMM 21, 250–252 (1941)CrossRefMATHGoogle Scholar
  29. Grant, H.L., Stewart, R.W., Moilliet, A.: Turbulence spectra from a tidal channel. J. Fluid Mech. 12, 241–263 (1962)CrossRefMATHGoogle Scholar
  30. Grossmann, S.: The onset of shear flow turbulence. Rev. Mod. Phys. 72 (2), 603–618 (2000)CrossRefGoogle Scholar
  31. Gurvich, A.S., Yaglom, A.M.: Breakdown of eddies and probability distributions for small-scale turbulence. Phys. Fluids 10, 59–65 (1967)CrossRefMATHGoogle Scholar
  32. Halsey, T.C., Jensen, M.H., Kadanoff, L.P., Procaccia, I., Shraiman, B.: Fractal measures and their singularities: the characterization of strange sets. Phys. Rev. A 33, 1141–1151 (1986)MathSciNetCrossRefMATHGoogle Scholar
  33. Heisenberg, W.: Über Stabilität und Turbulenz von Flüssigkeitsströmen. Annalen der Physik, 74 of 4, S. 577–627. Barth, Leipzig (1924)Google Scholar
  34. Hentschel, H.G.E., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8, 435–444 (1983)MathSciNetCrossRefMATHGoogle Scholar
  35. Herbert, T.: Secondary instability of boundary layers. Ann. Rev. Fluid Mech. 20, 487–526 (1988)CrossRefGoogle Scholar
  36. Herbert, T., Bertolotti, F.P.: Stability analysis of nonparallel boundary layers. Bull. Am. Phys. Soc. 32, 2079–2806 (1987)Google Scholar
  37. Hinze, J.O.: Turbulence. McGraw-Hill, New York (1987)Google Scholar
  38. von Kármán, T.: Progress in statistical theory of turbulence. In: Proceedings of the National Academy of Sciences of the United States of America, Bd. 34, S. 530–539. Academy, Washington, DC (1948)Google Scholar
  39. Kida, S., Takaoka, M.: Vortex reconnection. Annu. Rev. Fluid Mech. 26, 169–189 (2004)MathSciNetCrossRefMATHGoogle Scholar
  40. Klebanoff, P.S.: Characteristics of Turbulence in a Boundary Layer with Zero Pressure Gradient. Report 1247, NACA (1955)Google Scholar
  41. Klebanoff, P.S., Tidstrom, K.D., Sargent, L.M.: The three-dimensional nature of boundary layer instability. J. Fluid Mech. 12, 1–34 (1962)CrossRefMATHGoogle Scholar
  42. Klingmann, B.G.B., Boiko, A.V., Westin, K.J.A., Kozlov, V.V., Alfredsson, P.H.: Experiments on the stability of Tollmien-Schlichting waves. Eur. J. Mech. B Fluids 12 (4), 493–514 (1993)Google Scholar
  43. Kolmogorov, A.N.: Die lokale Struktur der Turbulenz in einer inkompressiblen zähen Flüssigkeit bei sehr großen Reynolds-Zahlen. Dokl. Akad. Wiss. USSR 30, 301–305 (1941)Google Scholar
  44. Kolmogorov, A.N.: A refinement of previous hypothesis concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds numbers. J. Fluid Mech. 13, 82–85 (1962)MathSciNetCrossRefMATHGoogle Scholar
  45. Kraichnan, R.H.: Inertial ranges in two-dimensional turbulence. Phys. Fluids 10, 1417–1423 (1967)CrossRefGoogle Scholar
  46. Kurien, S., Sreenivasan, K.R.: Measures of anisotropy and the universal properties of turbulence. In: New Trends in Turbulence, Les Houches, S. 53–111 (2001)Google Scholar
  47. Landau, L.D., Lifschitz, E.M.: Lehrbuch der Theoretischen Physik: Hydrodynamik, 6. Akademie Verlag, Berlin (1991)MATHGoogle Scholar
  48. Laurien, E., Oertel, H., jr.: Numerische Strömungsmechanik. Springer Vieweg, Wiesbaden (2013)Google Scholar
  49. Lesieur, M.: Turbulence in Fluids. Springer, Berlin, Heidelberg (2008)CrossRefMATHGoogle Scholar
  50. Lesieur, M., Metais, O.: New trends in large Eddy simulation of turbulence. Annu. Rev. Fluid Mech. 28, 45–82 (1996)MathSciNetCrossRefGoogle Scholar
  51. Lin, C.C.: On the stability of two-dimensional parallel flows. Q. Appl. Math. 3, 117–142 (1945)MathSciNetCrossRefMATHGoogle Scholar
  52. Lin, C.C.: The Theory of Hydrodynamic Stability, Bd. 5. Cambridge University Press, Cambridge (1955)MATHGoogle Scholar
  53. Lugt, H.J.: Vortex Flow in Nature and Technology. Wiley, New York (1983)Google Scholar
  54. Mandelbrot, B.B.: Intermittent turbulence in self similar cascades: divergence of high moments and dimension of the carrier. J. Fluid Mech. 62, 331–358 (1974)CrossRefMATHGoogle Scholar
  55. McWilliams, J.C.: The vortices of two-dimensional turbulence. J. Fluid Mech. 219, 361–385 (1990)CrossRefGoogle Scholar
  56. Meneveau, C., Sreenivasan, K.R.: A simple multifractal cascade model for fully developed turbulence. Phys. Rev. Lett. 59, 1424–1427 (1987)CrossRefGoogle Scholar
  57. Moin, P., Mahesh, K.: Direct numerical simulation: a tool in turbulence research. Annu. Rev. Fluid Mech. 30, 539–578 (1998)MathSciNetCrossRefGoogle Scholar
  58. Moffatt, H.K.: Degrees of knotedness of tangles vortex lines. J. Fluid Mech. 36, 117–129 (1969)CrossRefMATHGoogle Scholar
  59. Monin, A.S., Yaglom, A.M.: Statistical Fluid Mechanics: Mechanics of Turbulence II. MIT, Cambridge (1975)Google Scholar
  60. Narasimha, R.: The Laminar-turbulent transition zone in the boundary layer. Prog. Aerosp. Sci. 22, 29–80 (1985)CrossRefGoogle Scholar
  61. Nikuradse, J.: Gesetzmäßigkeit der turbulenten Strömung in glatten Rohren. Forschungsheft 356, VDI, Berlin (1932)Google Scholar
  62. Novikov, E.A.: Intermittency and scale similarity in the structure of a turbulent flow. J. App. Math. Mech. 35, 231–241 (1971)CrossRefMATHGoogle Scholar
  63. Novikov, E.A., Stewart, R.: Intermittency of turbulence and spectrum of fluctuations in energy-dissipation. Izvestiya Akademii Nauk SSSR, Seria Geofiz. 3, 408 (1964)Google Scholar
  64. Obukhov, A.: Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 77–81 (1962)MathSciNetCrossRefMATHGoogle Scholar
  65. Oertel, H., jr.: Strömungsmechanische Instabilitäten, Prandtl – Führer durch die Strömungslehre. Vieweg Verlag, Braunschweig, Wiesbaden, 11. Aufl. (2002)Google Scholar
  66. Oertel, H., jr., Delfs, J.: Strömungsmechanische Instabilitäten. Springer, Berlin/Heidelberg (1996); Universitätsverlag, Karlsruhe (2005)Google Scholar
  67. Oertel, H., jr., Böhle, M., Reviol, T.: Strömungsmechanik. Springer Vieweg, Wiesbaden (2015)Google Scholar
  68. Oertel, H., jr.: Flow Control-Theoretical Concept of Absolute Instability. KIT Scientific Publishing, Karlsruhe (2010)Google Scholar
  69. Oertel, H., sen., Oertel, H., jr.: Optische Strömungsmesstechnik. Braun Verlag, Karlsruhe (1989)Google Scholar
  70. Orr, W.M.F.: The stability or instability of the steady motions of a perfect liquid and a viscous liquid. Proc. R. Ir. Acad. A 27, 69–138 (1907)MATHGoogle Scholar
  71. Orszag, S.A.: Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid Mech. 50, 684–703 (1971)CrossRefMATHGoogle Scholar
  72. Paret, J., Tabeling, P.: Experimental observation of the two-dimensional inverse energy cascade. Phys. Rev. Lett. 79, 4162–4165 (1997)CrossRefGoogle Scholar
  73. Parisi, G., Frisch, U.: Fully developed turbulence and intermittency. In: Ghil, M., Benzi, R., Parisi, G. (Hrsg.) Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics. Proceedings of the International School of Physics Enrico Fermi, Varenna, 1983, S. 84–87. North-Holland, Amsterdam/New York (1985)Google Scholar
  74. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  75. Rayleigh, J.W.S.: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. Ser. 32 (6), 529–546 (1916)CrossRefMATHGoogle Scholar
  76. Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philos. Trans. R. Soc. Lond. 174, 935–982 (1883)CrossRefMATHGoogle Scholar
  77. Reynolds, O.: On the dynamic theory of incompressible viscous fluids and the determination of the criterion. Philos. Trans. R. Soc. Lond. 186, 123–164 (1894)CrossRefGoogle Scholar
  78. Richardson, L.F.: The supply of energy from and to atmospheric Eddies. Proc. R. Soc. Lond. A 97, 354–373 (1920)CrossRefGoogle Scholar
  79. Ruelle, D., Takens, F.: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971)MathSciNetCrossRefMATHGoogle Scholar
  80. Saric, W.: Görtler Vortices. Ann. Rev. Fluid Mech. 26, 379–409 (1994)MathSciNetCrossRefGoogle Scholar
  81. Schubauer, G.B., Skramstad, H.K.: Laminar boundary-layer oscillations and stability of Laminar flow. J. Aeronaut. Sci. 14 (2), 69–78, (1947)CrossRefGoogle Scholar
  82. Sengupta, T.K.: Instabilities of Flows and Transition to Turbulence. CRC Press & Francis Group, Boca Raton (2012)MATHGoogle Scholar
  83. Sommerfeld, A.: Ein Beitrag zur hydrodynamischen Erklärung der turbulenten Flüssigkeitsbewegung. In: Castelnuovo, G. (Hrsg.) Atti del IV Congresso internazionale dei matematici, Roma, S. 116–124 (1908)Google Scholar
  84. Somméria, J.: Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139–168 (1986)CrossRefGoogle Scholar
  85. Speziale, C.G.: Analytical methods for the development of Reynolds stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107–157 (1991)MathSciNetCrossRefMATHGoogle Scholar
  86. Sreenivasan, K.R.: Fractals and multifractals in fluid mechanics. Annu. Rev. Fluid Mech. 23, 539–600 (1991)MathSciNetCrossRefGoogle Scholar
  87. Sreenivasan, K.R.: On the universality of the Kolmogorov constant. Phys. Fluids 7, 2778–2784 (1995)MathSciNetCrossRefMATHGoogle Scholar
  88. Sreenivasan, K.R., Antonia, R.A.: Phenomenology of small scale turbulence. Annu. Rev. Fluid Mech. 29, 435–472 (1997)MathSciNetCrossRefGoogle Scholar
  89. Sreenivasan, K.R., Donnelly, R.J.: Role of cryogenic helium in classical fluid dynamics: basic research and model testing. Adv. Appl. Mech. 37, 239–275 (2000)CrossRefGoogle Scholar
  90. Stolovitzky, G., Kailasnath, P., Sreenivasan, K.R.: Kolmogorov’s refined similarity hypotheses. Phys. Rev. Lett. 69, 1178 (1992)CrossRefMATHGoogle Scholar
  91. Stuart, J.T.: Unsteady boundary layers. In: Rosenhead, L. (Hrsg.) Laminar Boundary Layers, S. 349–408. Clarendon Press, Oxford (1963)Google Scholar
  92. Tabeling, P.: Two-dimensional turbulence: a physicist’s approach. Phys. Rep. 362, 1–62 (2002)MathSciNetCrossRefMATHGoogle Scholar
  93. Taylor, G.I.: Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. Lond. A 223, 289–343 (1923)CrossRefMATHGoogle Scholar
  94. Taylor, G.I.: Statistical theory of turbulence, Parts 1–4. Proc. R. Soc. Lond. A 151, 421–478 (1935)CrossRefMATHGoogle Scholar
  95. Taylor, G.I.: Correlation measurements in a turbulent flow through a pipe. Proc. R. Soc. Lond. A 157, 537–546 (1936)CrossRefGoogle Scholar
  96. Tollmien, W.: Über die Entstehung der Turbulenz. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 21–44 (1929)Google Scholar
  97. Vainshtein, S.I., Sreenivasan, K.R.: Kolmogorov’s refined similarity hypotheses. Phys. Rev. Lett. 73, 3085–3088 (1994)CrossRefGoogle Scholar
  98. Voth, G.A., Satyanarayanan, K., Bodenschatz, E.: Lagrangian acceleration measurements at large Reynolds numbers. Phys. Fluids 10, 2268–2280 (1998)CrossRefGoogle Scholar
  99. Wendt, F.: Turbulente Strömung zwischen zwei rotierenden koaxialen Zylindern. Ingenieur-Archiv 4, 577–595 (1933)CrossRefGoogle Scholar
  100. Yeung, P.K.: Lagrangian investigations of turbulence. Rev. Fluid Mech. 34, 115–142 (2002)MathSciNetCrossRefMATHGoogle Scholar
  101. Zagarola, M.V., Smits, A.J.: Scaling of turbulent pipe flow. J. Fluid Mech. 373, 33–79 (1998)CrossRefMATHGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.Bobst Library, New York UniversityNew YorkUSA
  2. 2.Baden-BadenDeutschland

Personalised recommendations