Skip to main content

Mikroströmungen

  • Chapter
  • First Online:
Book cover Prandtl - Führer durch die Strömungslehre

Part of the book series: Springer Reference Technik ((SRT))

  • 12k Accesses

Zusammenfassung

Das Kapitel Mikroströmungen behandelt Strömungen durch sehr kleine Kanäle und um sehr kleine Objekte und ist Teil des Lehrbuches und Nachschlagewerkes H. Oertel jr. Prandtl-Führer durch die Strömungslehre. Nach einigen exemplarischen Anwendungen der Mikroströmungen, werden für Gase und Flüssigkeiten separat die Grenzen der kontinuumsmechanischen Behandlung diskutiert. Molekulare und Kontinuums-Modelle werden zusammen mit den adäquaten Randbedingungen für Mikroströmungen erläutert.

Weitergehend werden aus einer Ähnlichkeitsdiskussion die Konsequenzen der Verkleinerung abgeleitet und spezielle Effekte wie die Elektrokinetik, die (dynamische) Benetzung und dünne Filme abgehandelt. Schließlich wird der Stand der Literatur zum Druckverlust, zur laminar-turbulenten Transition und zum Wärmeübergang in Mikrorohren dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Weiterführende Literatur

  • Abraham, F.F.: The interfacial density profile of a lennard-jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: a Monte Carlo simulation. J. Chem. Phys. 68, 3713 (1978)

    Article  Google Scholar 

  • Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M., Qureshi, Z.H.: An experimental investigation of single-phase forced convection in microchannels. Int. J. Heat Mass Transf. 41, 851–857 (1998)

    Article  Google Scholar 

  • Barz, D.P.J.: Ein Beitrag zur Modellierung und Simulation elektrokinetischer Transportprozesse in mikrofluidischen Einheiten. Dissertation, Universität Karlsruhe (2005)

    Google Scholar 

  • Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  • Bird, G.A.: Molecular Gas Dynamics. Claredon Press, Oxford (1976)

    Google Scholar 

  • Brutin, D., Topin, F., Tadrist, L.: Transient method for the liquid laminar flow friction factor in microtubes. AIChE J. 49, 2759–2767 (2003)

    Article  Google Scholar 

  • Burgreen, D., Nakache, F.: Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091 (1964)

    Article  Google Scholar 

  • Chan, D.Y.C., Horn, R.G.: The drainage of thin liquid films between solid surfaces. J. Chem. Phys. 83, 5311–5324 (1985)

    Article  Google Scholar 

  • Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases. Cambridge University Press, Cambridge (1970)

    MATH  Google Scholar 

  • Celata, G.P., Cumo, M., Marconi, V., McPhail, S.J., Zummo, G.: Microtube liquid single-phase heat transfer in laminar flow. Int. J. Heat Mass Transf. 49, 3538–3546 (2006)

    Article  Google Scholar 

  • Celata, G.P., Cumo, M., McPhail, S.J., Zummo, G.: Single-phase laminar and turbulent heat transfer in smooth and rough microtubes. Microfluid Nanofluid 3, 697–707 (2007)

    Article  Google Scholar 

  • Choi, S.B., Barron, R.F., Warrington, R.O.: Fluid flow and heat transfer in microtubes. ASME AMD-DSC 32, 123–134 (1991)

    Google Scholar 

  • Craig, V.S.J., Neto, C., Williams, D.R.M.: Shear-dependent boundary slip in an aqueous Newtonian liquid. Phys. Rev. Lett. 87 (5), 054504 (2001)

    Article  Google Scholar 

  • de Gennes, P.G.: Wetting: Statistics and dynamics. Rev. Mod. Phys. 57, 827 (1985)

    Article  Google Scholar 

  • Debye, P., Hückel, E.: Zur Theorie der Elektrolyte. Gefrierpunktserniedrigung und verwandte Erscheinungen. Physikalische Z. 24, 185–206 (1923)

    MATH  Google Scholar 

  • Derzko, N.A.: Review of Monte Carlo methods in kinetic theory. UTIAS Review 35, University of Toronto (1972)

    Google Scholar 

  • Dongqing, Li: Electrokinetics in Microfluidics. Elsevier, London (2004)

    Google Scholar 

  • Dussan, E.B.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Ann. Rev. Fluid Mech. 11, 371 (1979)

    Article  Google Scholar 

  • Dussan, E.B., Davis, S.H.: On the motion of a fluid-fluid interface along a solid surface. J. Fluid Mech. 50, 977 (1974)

    MATH  Google Scholar 

  • Fritz, G.: Über den dynamischen Randwinkel im Fall der vollständigen Benetzung. Z. Angew. Physik 19, 374 (1965)

    Google Scholar 

  • Gad-el-Hak, M.: The fluid mechanics of microdevices – the Freeman scholar lecture. J. Fluids Engineering 121, 5–33 (1999)

    Article  Google Scholar 

  • Gad-el-Hak, M.: Flow physics. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006)

    Google Scholar 

  • Gee, M.L., McGuiggan, P.M., Israelachvili, J.N., Homola, A.M.: Liquid to solidlike transition of molecularly thin films under shear. J. Chem. Phys. 93, 1895–1906 (1990)

    Article  Google Scholar 

  • Green, H.: The Structure of Liquids. S. Flügge, (Hrsg.), Handbuch der Physik, Bd. 10. Springer, Berlin (2002)

    Google Scholar 

  • Herwig, H.: Flow and heat transfer in micro systems: is everything different or just smaller? Z. Angew. Math. Mech. 82, 579–586 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P.: Fluid flow in micro-channels. Int. J. Heat Mass Transf. 48, 1982–1998 (2005a)

    Article  Google Scholar 

  • Hetsroni, G., Mosyak, A., Pogrebnyak, E., Yarin, L.P.: Heat transfer in micro-channels: comparison of experiments with theory and numerical results. Int. J. Heat Mass Transf. 48, 5580–5601 (2005b)

    Article  Google Scholar 

  • Hoffman, R.L.: A study of the advancing interface. I. Interface shape in liquid-gas system. J. Colloid Interface Sci. 50, 228 (1975)

    Article  Google Scholar 

  • Hunter, R.J.: Zeta Potential in Colloid Science: Principles and Applications. Accademic, London (1981)

    Google Scholar 

  • Ivanov, M.S., Rogasinsky, S.V.: Theoretical analysis of traditional and modern schemes of the DSMC method. In: Proceedings of the 17th RGD Symposium, Bd. 1, Verlag Chemie, Aachen (1991)

    Google Scholar 

  • Joseph, P., Tabeling, P.: Direct measurement of the apparent slip length. Phys. Rev. E 71, 035303 (2005)

    Article  Google Scholar 

  • Judy, J., Maynes, D., Webb, B.W.: Characterization of frictional pressure drop for liquid flows through microchannels. Int. J. Heat Mass Transf. 45, 3477–3489 (2002)

    Article  Google Scholar 

  • Karniadakis, G.E., Beskok, A.: Micro Flows. Fundamentals and Simulation. Springer, New York (2004)

    MATH  Google Scholar 

  • Koplik, P.J., Banavar, J.R.: Continuum deductions from molecular hydrodynamics. Ann. Rev. Fluid Mech. 27, 257–292 (1995)

    Article  Google Scholar 

  • Lennard-Jones, J.E.: Cohesion. Proc. Phys. Soc. Lond. 43, 461 (1931)

    Article  Google Scholar 

  • Li, Z.X., Du, D.X., Guo, Z.Y.: Experimental study on flow characteristics of liquid in circular micro-tubes. Microscale Thermophys. Eng. 7 (3), 253–265 (2003)

    Article  Google Scholar 

  • Li, H., Yoda, M.: An experimental study of slip considering the effects of non-uniform colloidal tracer distributions. J. Fluid Mech. 662, 269–287 (2010)

    Article  MATH  Google Scholar 

  • Lin, T.-Y., Yang, C.-Y.: An experimental investigation on forced convection heat transfer performance in micro tubes by the method of liquid crystal thermography. Int. J. Heat Mass Transf. 50, 4736–4742 (2007)

    Article  Google Scholar 

  • Löfdahl, L., Gad-el-Hak, M.: Sensors and actuators for turbulent flows. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Applications, 2. CRC, Boca Raton (2006)

    Google Scholar 

  • Loose, W., Hess, S.: Rheology of dense model fluids via nonequilibrium molecular dynamics: shear thinning and ordering transition. Rheologica Acta 28, 91–101 (1989)

    Article  Google Scholar 

  • Maier, C.: Techniken der Hochgeschwindigkeitsmikrokinematographie zur Bewertung von Mikrodosiersystemen und Mikrotropfen. Fortschritts-Bericht 1037, VDI (2004). Dissertation Universität Ulm

    Google Scholar 

  • Manz, A., Becker, H.: Microsystem Technology in Chemistry and Life Sciences. Springer, Berlin (1999)

    Google Scholar 

  • Maxwell, J.: On stresses in rarefied gases arising from inequalities of temperature. Philos. Trans. R. Soc. 170 (1), 231–256 (1879)

    Article  MATH  Google Scholar 

  • Meisel, I., Ehrhard, P.: Electrically-excited (electroosmotic) flows in microchannels for mixing applications. Eur. J. Mech. B: Fluids 25, 491–504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Moss, J.N., Bird, G.A.: Direct simulation of transitional flow for hypersonic reentry conditions. 84-0223, AIAA (1984)

    Google Scholar 

  • Nanbu, K.: Numerical simulation of Boltzmann flows of real gases – accuracy of models used in the Monte Carlo method. Rep. Inst. Fluid Science 4, Tohoku University, Sendai (1992)

    Google Scholar 

  • Oertel, H., jr.: Aerothermodynamik. Springer, Berlin/Heidelberg (1994). Universitätsverlag, Karlsruhe (2005)

    Google Scholar 

  • Oron, A.: Physics of thin liquid films. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006)

    Google Scholar 

  • Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Modern Phys. 69, 931–980 (1997)

    Article  Google Scholar 

  • Overbeek, J.T.G.: Electrokinetic phenomena. In: Kruyt, H.R. (Hrsg.) Colloid Science, Bd. 1. Elsevier, Amsterdam (1952)

    Google Scholar 

  • Probstein, R.F.: Physicochemical Hydrodynamics. Wiley, New York (1994)

    Book  Google Scholar 

  • Ramos, A., Morgan, H., Green, N.G., Castellanos, A.: AC electrokinetics: a review of forces in microelectrode structures. J. Phys. D: Appl. Phys. 31, 2338–2353 (1998)

    Article  Google Scholar 

  • Rice, C.L., Whitehead, R.: Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69, 4017–4024 (1965)

    Article  Google Scholar 

  • Rose, W., Heins, R.W.: Moving interfaces and contact angle rate-dependency. J. Colloid Sci. 17, 39 (1962)

    Article  Google Scholar 

  • Schaaf, S.A., Chambré, P.L.: Flow of Rarefied Gases. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  • Schubert, K., Brandner, J.J., Fichtner, M., Linder, G., Schygulla, U., Wenka, A.: Microstructure devices for applications in thermal and chemical process engineering. J. Microscale Thermophys. Eng. 5, 17–39 (2001)

    Article  Google Scholar 

  • Schwartz, A.M., Tajeda, S.B.: Studies of dynamic contact angles on solids. J. Colloid Interface Sci. 38, 359 (1972)

    Article  Google Scholar 

  • Sharp, K.V., Adrian, R.J.: Transition from laminar to turbulent flow in liquid filled microtubes. Exp. Fluids 36, 741–747 (2004)

    Article  Google Scholar 

  • Sharp, K.V., Adrian, R.J., Santiago, J.G., Molho, J.I.: Liquid flows in microchannels. In: Gad-el-Hak, M. (Hrsg.) The MEMS Handbook: Introduction and Fundamentals, 2. CRC, Boca Raton (2006)

    Google Scholar 

  • Shih, J.C., Ho, C.-M., Liu, J., Tai, Y.-C.: Non-linear pressure distribution in uniform microchannels. ASME AMD-MD, 238 (1995)

    Google Scholar 

  • Sobhan, C., Garimella, S.V.: A comparative analysis of studies on heat transfer and fluid flow in microchannels. J. Microscale Thermophys. Eng. 5, 293–311 (2001)

    Article  Google Scholar 

  • Tanner, L.H.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. 12, 1473 (1979)

    Article  Google Scholar 

  • Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)

    Article  Google Scholar 

  • Tretheway, D.C., Meinhart, C.D.: Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14, L9–L12 (2002)

    Article  Google Scholar 

  • Vallet, M., Berge, B., Vovelle, L.: Electrowetting of water and aqueous solutions on Polyethylene Terephthalate insulating films. Polymer 37, 2465–2470 (1996)

    Article  Google Scholar 

  • Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

  • Yu, D., Warrington, R., Barron, R., Anieel, T.: An experimental and theoretical investigation of fluid flow and heat transfer in microtubes. In: Proceedings of the ASME/JSME Thermal Engineering Conference, Hawaii, Bd. 1, 523–530 (1995)

    Google Scholar 

  • Zheng, S., Tai, Y.C.: Streamline based design of a MEMS device for continuous blood cell separation. In: Twelth Hilton Head Workshop on the Science and Technology of Solid-state Sensors, Actuators, and Microsystems, Hilton Head, Bd. 1 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Ehrhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Ehrhard, P. (2017). Mikroströmungen. In: Oertel jr., H. (eds) Prandtl - Führer durch die Strömungslehre. Springer Reference Technik . Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-08627-5_12

Download citation

Publish with us

Policies and ethics