Strömungen mit chemischen Reaktionen

Chapter
Part of the Springer Reference Technik book series (SRT)

Weiterführende Literatur

  1. Abdel-Gayed, R.G., Bradley, D., Hamid, N.M., Lawes, M.: Lewis number effects on turbulent burning velocity. Proc. Combust. Inst. 20, 505 (1984)CrossRefGoogle Scholar
  2. Arrhenius, S.A.: Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker in Säuren. Z. Phys. Chem. 4, 226–248 (1889)Google Scholar
  3. Ashurst, W.T.: Modelling turbulent flame propagation. Proc. Combust. Inst. 25, 1075 (1995)CrossRefGoogle Scholar
  4. Atkins, P.W.: Physikalische Chemie. Wiley-VCH, Weinheim (2013)Google Scholar
  5. Bilger, R.W.: Turbulent Flows with nonpremixed reactants. In: Libby, P.A., Williams, F.A. (Hrsg.) Turbulent Reactive Flows. Springer, Berlin/Heidelberg/New York (1980)Google Scholar
  6. Bockhorn, H., Chevalier, C., Warnatz, J., Weyrauch, V.: Bildung von promptem NO in Kohlenwasserstoff-Luft-Flammen. 6. TECFLAM-Seminar. DLR, Stuttgart (1990)Google Scholar
  7. Borghi, R. (Hrsg.): Recent Advances in Aeronautical Science. Pergamon, London (1984)Google Scholar
  8. Bradley, D.: How fast can we burn. Proc. Combust. Inst. 24, 247 (1993)CrossRefGoogle Scholar
  9. Bray, K.N.C.: Turbulent flows with premixed reactants. In: Libby, P.A., Williams, F.A. (Hrsg.) Turbulent Reacting Flows. Springer, Berlin/Heidelberg/New York (1980)Google Scholar
  10. Candel, S., Veynante, D., Lacas, F., Darabiha, N.: Current progress and future trends in turbulent combustion. Combust. Sci. Technol. 98, 245 (1994)CrossRefGoogle Scholar
  11. Dahm, W.J.A., Bish, E.S.: High resolution measurements of molecular transport and reaction processes in turbulent combustion. In: Takeno, T. (Hrsg.) Turbulence and Molecular Processes in Combustion. Elsevier, New York (1993)Google Scholar
  12. Dahm, W.J.A., Tryggvason, G., Zhuang, M.: Integral method solution of time-dependent strained diffusion-reaction layers with multi-step kinetics. SIAM J. Appl. Math. 56 (4), 1039 (1996)MathSciNetCrossRefMATHGoogle Scholar
  13. Damköhler, G.: Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen. Z. Elektrochem, 46, 601–652 (1940)Google Scholar
  14. Dibble, R.W., Masri, A.R., Bilger, R.W.: The spontaneous Raman scattering technique applied to non-premixed flames of methane. Combust. Flame 67, 189 (1987)CrossRefGoogle Scholar
  15. Di Domenico, M., Beck, C.H., Lammel, O., Krebs, W., Noll, B.E.: Experimental and numerical investigation of turbulent, lean, high-strained, confined, jet flames. In: AIAA 2011–238, 49th AIAA Aerospace Sciences Meeting, 2011, Orlando (2011)Google Scholar
  16. Dinkelacker, F., Buschmann, A., Schäfer, M., Wolfrum, J.: Spatially resolved joint measurements of OH- and temperature fields in a large premixed turbulent flame. In: Proceedings of the Joint Meeting of the British and German Sections of the Combustion Institute, S. 295, Cambridge (1993)Google Scholar
  17. Dopazo, C., O’Brian, E.E.: An approach to the description of a turbulent mixture. Acta Astron. 1, 1239 (1974)CrossRefMATHGoogle Scholar
  18. Dreier, T., Lange, B., Wolfrum, J., Zahn, M., Behrendt, F., Warnatz, J.: CARS measurements and computations of the structure of laminar stagnation-point Methane-air counterflow diffusion flames. Proc. Combust. Inst. 21, 1729 (1987)CrossRefGoogle Scholar
  19. Gutheil, E., Bockhorn, H.: The effect of multi-dimensional PDFs in turbulent reactive flows at moderate Damköhler number. Physicochem. Hydrodyn. 9, 525 (1987)Google Scholar
  20. Heywood, J.B.: Internal Combustion Engine Fundamentals. McGraw-Hill, New York (1988)Google Scholar
  21. Homann, K.H.: Reaktionskinetik. Steinkopff, Darmstadt (1975)CrossRefGoogle Scholar
  22. Homann, K.H., Solomon, W.C., Warnatz, J., Wagner, H.G., Zetzsch, C.: Eine Methode zur Erzeugung von Fluoratomen in inerter Atmosphäre. Berichte der Bunsengesellschaft für Physikalische Chemie 74, 585 (1970)Google Scholar
  23. Lammel, O., Stöhr, M., Kutne, P., Dem, C., Meier, W., Aigner, M.: Experimental analysis of confined jet flames by laser measurement techniques. J. Eng. Gas Turbines Power 134, 041506 (2012)CrossRefGoogle Scholar
  24. Law, C.K.: Dynamics of streched flames. Proc. Combust. Inst. 22, 1381 (1989)CrossRefGoogle Scholar
  25. Libby, P.A., Williams, F.A.: Turbulent flows involving chemical reactions. Annu. Rev. Fluid Mech. 8, 351–376 (1976)CrossRefGoogle Scholar
  26. Libby, P.A., Williams, F.A.: Fundamental aspects of turbulent reacting flows. In: Libby, P.A., Williams, F.A. (Hrsg.) Turbulent Reacting Flows. Springer, Berlin/Heidelberg/New York (1980)CrossRefGoogle Scholar
  27. Libby, P.A., Williams, F.A.: Turbulent Reacting Flows. Academic, New York (1994)MATHGoogle Scholar
  28. Liu, Y., Lenze, B.: The influence of turbulence on the burning velocity of premixed CH4-H2 flames with different laminar burning velocities. Proc. Combust. Inst. 22, 747 (1988)CrossRefGoogle Scholar
  29. Magre, P., Dibble, R.W.: Finite chemical kinetic effects in a subsonic turbulent hydrogen flame. Combust. Flame 73, 195 (1988)CrossRefGoogle Scholar
  30. McMurtry, P.A., Menon, S., Kerstein, A.R.: A linear Eddy sub-grid model for turbulent reacting flows: application to hydrogen-air combustion. Proc. Combust. Inst. 24, 271 (1992)CrossRefGoogle Scholar
  31. Metka, U., Schweitzer, M.G., Volpp, H.-R., Wolfrum, J., Warnatz, J.: In-situ detection of NO chemisorbed on platinum using infrared-visible sum-frequency generation SFG. Zeitschr. f. Phys. Chem. 214, 865–888 (2000)Google Scholar
  32. Nowak, U., Warnatz, J.: Sensitivity Analysis in Aliphatic Hydrocarbon Combustion. A. L. Kuhl, J. R. Bowen, J.-C. Leyer, A. Borisov, eds., Dynamics of reactive systems. American Institute of Aeronautics and Astronautics, New York (1988)Google Scholar
  33. Orlandini, I., Riedel, U.: Chemical kinetics of NO-removal by pulsed corona discharges. J. Phys. D (Appl. Phys.) 33, 2467–2474 (2000)Google Scholar
  34. Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231 (1987a)CrossRefGoogle Scholar
  35. Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231 (1987b)CrossRefGoogle Scholar
  36. Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  37. Peters, N., Warnatz, J.: Numerical Methods in Laminar Flame Propagation. Vieweg, Braunschweig/Wiesbaden (1982)CrossRefMATHGoogle Scholar
  38. Poinsot, T., Veynante, D., Candel, S.: Diagrams of premixed turbulent combustion based on direct numerical simulation. Proc. Combust. Inst. 23, 613 (1991)CrossRefGoogle Scholar
  39. Pope, S.B.: Computations of turbulent combustion: progress and challenges. Proc. Combust. Inst. 23, 591 (1991)CrossRefGoogle Scholar
  40. Reynolds, W.C.: The potential and limitations of direct and large Eddy simulation. In: Whither Turbulence. Turbulence at Crossroads, Bd. 313. Springer, Berlin/Heidelberg/New York (1989)Google Scholar
  41. Rhodes, R.P. (Hrsg.): Turbulent mixing in non-reactive and reactive flows. Plenum Press, New York (1979)Google Scholar
  42. Robinson, P.J., Holbrook, K.A.: Unimolecular Reactions. Wiley-Interscience, New York (1972)Google Scholar
  43. Rogg, B., Behrendt, F., Warnatz, J.: Turbulent non-premixed cumbustion in partially premixed diffusion flamelets with detailed chemistry. Proc. Combust. Inst. 21, 1533 (1987)CrossRefGoogle Scholar
  44. Rummel, K.: Der Einfluß des Mischungsvorganges auf die Verbrennung von Gas und Luft in Feuerungen. Stahleisen, Düsseldorf (1937)Google Scholar
  45. Schütz, H., Lückerath, R., Kretschmer, T., Noll, B., Aigner, M.: Analysis of the Pollutant formation in the FLOX combustion. J. Eng. Gas Turbines Power 130, 011503 (2008)CrossRefGoogle Scholar
  46. Sick, V., Arnold, A., Diessel, E., Dreier, T., Ketterle, W., Lange, B., Wolfrum, J., Thiele, K.U., Behrendt, F., Warnatz, J.: Two-dimensional laser diagnostics and modelling of counterflow diffusion flames. Proc. Combust. Inst. 23, 495 (1991)CrossRefGoogle Scholar
  47. Smooke, M.D., Mitchell, R.E., Keyes, D.E.: Numerical solution of two-dimensional axisymmetric laminar diffusion flames. Combust. Sci. Technol. 67, 85 (1989)CrossRefMATHGoogle Scholar
  48. Spalding, D.B.: Mixing and chemical reaction in steady confined turbulent flames. Proc. Combust. Inst. 13, 649 (1970)CrossRefGoogle Scholar
  49. Stahl, G., Warnatz, J.: Numerical investigation of strained premixed CH4-air flames up to high pressures. Combust. Flame 85, 285 (1991)CrossRefGoogle Scholar
  50. Tsuji, H., Yamaoka, I.:. The counterflow diffusion flame in the forward stagnation region of a porous cylinder. Proc. Combust. Inst. 11, 979 (1967)CrossRefGoogle Scholar
  51. Warnatz, J.: The structure of laminar Alkane-, Alkene-, and acetylene flames. Proc. Combust. Inst. 18, 369 (1981)CrossRefGoogle Scholar
  52. Warnatz, J.: Resolution of gas phase and surface chemistry into elementary reactions. Proc. Combust. Inst. 24, 553 (1993)CrossRefGoogle Scholar
  53. Warnatz, J., Maas, U., Dibble, R.W.: Verbrennung. Springer, Berlin/Heidelberg (2006)Google Scholar
  54. Westbrook, C.K., Dryer, F.L.: Chemical kinetics and modelling of combustion processes. Proc. Combust. Inst. 18, 749 (1981)CrossRefGoogle Scholar
  55. Williams, F.A.: Combustion Theory. The Benjamin Cummings Publishing Company, Menlo Park/Reading/Don Mills (1985)Google Scholar
  56. Zeldovich, Y.B., Frank-Kamenetskii, D.A.: The theory of thermal propagation of flames. Zh. Fiz. Khim. 12, 100 (1938)Google Scholar

Copyright information

© Springer Fachmedien Wiesbaden GmbH 2017

Authors and Affiliations

  1. 1.Institut für Verbrennungstechnik der Luft- u. RaumfahrtUniversität Stuttgart und Deutsches Zentrum für Luft- und RaumfahrtStuttgartDeutschland

Personalised recommendations