Advertisement

Repräsentation fusionierter Umfelddaten

  • Klaus Dietmayer
  • Dominik Nuß
  • Stephan Reuter
Chapter
Part of the ATZ/MTZ-Fachbuch book series (ATZMTZ)

Zusammenfassung

Unter einer Fahrzeugumgebungsrepräsentation, häufig auch als Fahrzeugumfeldmodell bezeichnet, versteht man eine dynamische Datenstruktur, in der alle relevanten Objekte und Infrastrukturelemente in der Nähe des eigenen Fahrzeugs möglichst korrekt in Ort und Zeit in einem gemeinsamen Bezugssystem enthalten sind. Die Erfassung und zeitliche Verfolgung der Objekte und Infrastrukturelemente erfolgen hierbei fortlaufend durch geeignete, in der Regel fusionierte bordeigene Sensoren wie Kameras und Radare (siehe Kap. 17–21). Zukünftig werden in diese Fusion vermehrt Informationen hochgenauer, attribuierter digitaler Karten sowie ggf. auch externe Informationen, basierend auf Car2x-Kommunikation, einfließen können. Abb. 25.1 zeigt beispielhaft Komponenten, die eine Fahrumgebungsrepräsentation enthalten können.

Literatur

  1. 1.
    BarShalom, Y., Fortmann, T.: Tracking and Data Association. Academic Press, Boston (1988)Google Scholar
  2. 2.
    Thrun, S.: Probabilistic Robotic. The MIT Press, Cambridge MA 02142-1209, USA (2005)Google Scholar
  3. 3.
    Mahler, R.: Multitarget Bayes filtering via first‐order multitarget moments. IEEE Transactions on Aerospace and Electronic Systems 39.4, 1152–1178 (2003)CrossRefGoogle Scholar
  4. 4.
    Kalman, R.: A new approach to linear filtering and prediction problems. Transactions of the ASME. Journal of Basic Engineering 82, 35–45 (1960)CrossRefGoogle Scholar
  5. 5.
    Julier, S., Uhlmann, J., Durrant-Whyte, H.: A new method for the nonlinear transformation of means and covariances in filters and estimators. IEEE Transactions on Automatic Control 45.3, 477–482 (2000)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Bar-Shalom, Y., Tse, E.: Tracking in a cluttered environment with probabilistic data association. Automatica 11, 451–460 (1975)CrossRefzbMATHGoogle Scholar
  7. 7.
    Musicki, D., Evans, R.: Joint Integrated Probabilistic Data Association. JIPDA, IEEE Transactions on Aerospace and Electronic Systems 40.3, 1093–1099 (2004)CrossRefGoogle Scholar
  8. 8.
    Munz, M.: Generisches Sensorfusionsframework zur gleichzeitigen Zustands‐ und Existenzschätzung für die Fahrzeugumfelderfassung. PhD Thesis. Ulm University, Ulm (2011)Google Scholar
  9. 9.
    Mahler, R.: Statistical Multisource‐Multitarget Information Fusion. Artech House, Boston (2007)zbMATHGoogle Scholar
  10. 10.
    Reuter, S., Wilking, B., Wiest, J., Munz, M., Dietmayer, K.: Real‐time multi‐object tracking using random finite sets. IEEE Transactions on Aerospace and Electronic Systems 49.4, 2666–2678 (2013)CrossRefGoogle Scholar
  11. 11.
    Vo, B.-T., Vo, B.-N., Cantoni, A.: The cardinality balanced multi‐target multi‐Bernoulli filter and its implementations. IEEE Transactions on Signal Processing 57.2, 409–423 (2009)MathSciNetGoogle Scholar
  12. 12.
    Reuter, S., Meissner, D., Wilking, B., Dietmayer, K.: Cardinality balanced multi‐target multi‐Bernoulli filtering using adaptive birth distributions. In: Proceedings of the 16th International Conference on Information Fusion, S. 1608–1615. (2013)Google Scholar
  13. 13.
    Stiller, C., Puente León, F., Kruse, M.: Information Fusion for automotive applications – an overview. Information Fusion 12.4, 244–252 (2011)CrossRefGoogle Scholar
  14. 14.
    Vo, B.-T., Vo, B.-N.: Labeled Random Finite Sets and Multi‐Object Conjugate Priors. IEEE Transactions on Signal Processing 61, 3460–3475 (2013)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Reuter, S., Vo, B.-T., Vo, B.-N., Dietmayer, K.: The Labeled Multi‐Bernoulli Filter IEEE Transactions on Signal Processing. (2014)Google Scholar
  16. 16.
    Skog, I., Handel, P.: In‐Car Positioning and Navigation Technologies: A Survey. IEEE Transactions on Intelligent Transportation Systems 10.1, 4–21 (2009)CrossRefGoogle Scholar
  17. 17.
    Levinson, J., Thrun, S.: Robust vehicle localization in urban environments using probabilistic maps IEEE International Conference on Robotics and Automation (ICRA)., S. 4372–4378 (2010)Google Scholar
  18. 18.
    Mattern, N., Schubert, R., Wanielik, G.: High‐accurate vehicle localization using digital maps and coherency images. In: IEEE Intelligent Vehicles Symposium, Bd. IV, S. 462–469. (2010)Google Scholar
  19. 19.
    Schindler, A.: Vehicle self‐localization with high‐precision digital maps. In: Intelligent Vehicles Symposium Workshops, Bd. IV Workshops, S. 134–139. (2013)Google Scholar
  20. 20.
    Konrad, M., Nuss, D., Dietmayer, K.: Localization in Digital Maps for Road Course Estimation using Grid Maps. In: IEEE Intelligent Vehicles Symposium, Bd. IV, S. 87–92. (2012)Google Scholar
  21. 21.
    Elfes, A.: Using occupancy grids for mobile robot perception and navigation. IEEE Computer 22.6, 46–57 (1989)CrossRefGoogle Scholar
  22. 22.
    Nuss, D., Wilking, B., Wiest, J., Deusch, H., Reuter, S., Dietmayer, K.: Decision‐Free True Positive Estimation with Grid Maps for Multi‐Object Tracking. In: IEEE Conference on Intelligent Transportation Systems (ITSC), S. 28–34. (2013)CrossRefGoogle Scholar
  23. 23.
    Petrovskaya, A., Perrollaz, M., Oliveira, L., Spinello, L., Triebel, R., Makris, A., Yoder, J.-D., Laugier, C., Nunes, U., Bessiere, P.: Awareness of road scene participants for autonomous driving. Handbook of Intelligent Vehicles. Ed. Springer, London, S. 1383–1432 (2012)Google Scholar
  24. 24.
    Scaramuzza, D., Fraundorfer, F.: Visual odometry [tutorial]. Robotics and Automation Magazine, IEEE 18(4), 80–92 (2011)CrossRefGoogle Scholar
  25. 25.
    Mayr, R.: Regelungsstrategien für die automatische Fahrzeugführung. Springer, Berlin Heidelberg (2001)CrossRefGoogle Scholar
  26. 26.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  27. 27.
    Zou, Y., Yeong, K.H., Chin, S.C., Xiao, W.Z.: Multi‐ultrasonic sensor fusion for autonomous mobile robots. Sensor Fusion: Architectures, Algorithms and Applications IV Proceedings of SPIE, Bd. 4051., S. 314–321 (2000)Google Scholar
  28. 28.
    Effertz, J.: Sensor Architecture and Data Fusion for Robotic Perception in Urban Environments at the 2007 DARPA Urban Challenge Conference on Robot Vision (RobVis). Springer, Berlin Heidelberg, S. 275–290 (2008)Google Scholar
  29. 29.
    Nuss, D., Reuter, S., Konrad, M., Munz, M., Dietmayer, K.: Using grid maps to reduce the number of false positive measurements in advanced driver assistance systems. In: IEEE Conference on Intelligent Transportation Systems (ITSC), S. 1509–1514. (2012)Google Scholar
  30. 30.
    Konrad, M., Szczot, M., Schüle, F., Dietmayer, K.: Generic grid mapping for road course estimation. In: IEEE Intelligent Vehicles Symposium, Bd. IV, S. 851–856. (2011)Google Scholar
  31. 31.
    Schmid, M.R., Mählisch, M., Dickmann, J., Wünsche, H.-J.: Dynamic level of detail 3d occupancy grids for automotive use. In: IEEE Intelligent Vehicles Symposium, Bd. IV, S. 269–274. (2010)Google Scholar
  32. 32.
    Coué, C., Pradalier, C., Laugier, C., Fraichard, T., Bessiere, P.: Bayesian Occupancy Filtering for Multitarget Tracking: an Automotive Application. International Journal of Robotics Research 25.1, 19–30 (2006)CrossRefGoogle Scholar
  33. 33.
    Baig, Q., Perrollaz, M., Nascimento, J.B.D., Laugier, C.: Using fast classification of static and dynamic environment for improving Bayesian occupancy filter (BOF) and tracking. In: International Conference on Control Automation Robotics Vision (ICARCV), S. 656–661. (2012)Google Scholar
  34. 34.
    Gindele, T., Brechtel, S., Schroder, J., Dillmann, R.: Bayesian occupancy grid filter for dynamic environments using prior map knowledge. In: IEEE Intelligent Vehicles Symposium, Bd. IV, S. 669–676. (2009)Google Scholar
  35. 35.
    Wang, C.-C., Thorpe, C., Thrun, S., Hebert, M., Durrant-Whyte, H.: Simultaneous localization, mapping and moving object tracking. International Journal of Robotics Research 26.9, 889–916 (2007)CrossRefGoogle Scholar
  36. 36.
    Bouzouraa, M., Hofmann, U.: Fusion of occupancy grid mapping and model based object tracking for driver assistance systems using laser and radar sensors. In: IEEE Intelligent Vehicles Symposium, Bd. IV, S. 294–300. (2010)Google Scholar
  37. 37.
    Nuss, D., Stuebler, M., Dietmayer, K.: Consistent Environmental Modeling by Use of Occupancy Grid Maps, Digital Road Maps, and Multi‐Object Tracking. In: IEEE Intelligent Vehicles Symposium, Bd. IV. (2014)Google Scholar
  38. 38.
    Deusch, H., Nuss, D., Konrad, P., Konrad, M., Fritzsche, M., Dietmayer, K.: Improving Localization in Digital Maps with Grid Maps. In: IEEE Conference on Intelligent Transportation Systems (ITSC), S. 1522–1527. (2013)CrossRefGoogle Scholar

Copyright information

© Springer Fachmedien Wiesbaden 2015

Authors and Affiliations

  • Klaus Dietmayer
    • 1
  • Dominik Nuß
    • 2
  • Stephan Reuter
    • 2
  1. 1.Institut für Mess-, Regel- und MikrotechnikUniversität UlmUlmDeutschland
  2. 2.Institut für Mess-, Regel- und MikrotechnikUniversität UlmUlmDeutschland

Personalised recommendations